四、复合函数求导法的应用——隐函数微分法
(一)由方程式确定的隐函数求导法
1. 由一个方程式确定的一元隐函数求导法
【定理8.9】(隐函数存在定理)如果二元方程 \(F(x, y) = 0\) 满足如下三个条件:
① 函数 \(F(x, y)\) 在点 \((x_0, y_0)\) 某邻域有连续的偏导数
② \(F(x_0, y_0) = 0\)
③ \(F'_y(x_0, y_0) \neq 0\)
则方程 \(F(x, y) = 0\) 在点 \((x_0, y_0)\) 某邻域恒能唯一确定一个连续函数 \(y = y(x)\),它满足 \(y_0 = y(x_0)\),并有连续的导数,且
\[y' = \frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{F_x'}{F_y'}. \tag{8.5}\]【注】 该定理的三个条件中关键是 \(F_{y}^{\prime}(x_{0},y_{0})\neq 0\),就可确定隐函数 \(y = y(x)\),而且 \(y_0 = y(x_0)\)。如果也有 \(F_{x}^{\prime}(x_{0},y_{0})\neq 0\),当然该方程也能在 \(y_{0}\) 的某邻域确定隐函数 \(x = x(y)\),而且 \(x_0 = x(y_0)\)。
求此时隐函数的导数的方法是:在 \((x_0, y_0)\) 邻域将恒等式 \(F(x, y(x)) \equiv 0\) 两边对 \(x\) 求导,应用复合函数求导法可得 \(F_x' + F_y' y' = 0\),解出 \(y'\) 就得(8.5)。
2. 由一个方程式确定的二元隐函数求导法
【定理8.10】(隐函数存在定理)如果三元方程 \(F(x, y, z) = 0\) 满足如下三个条件:
① 函数 \(F(x, y, z)\) 在点 \((x_0, y_0, z_0)\) 某邻域有连续偏导数
② \(F(x_0, y_0, z_0) = 0\)
③ \(F_z'(x_0, y_0, z_0) \neq 0\)
则此方程在点 \((x_0, y_0, z_0)\) 某邻域恒能唯一确定一个连续函数 \(z = z(x, y)\),它满足 \(z_0 = z(x_0, y_0)\),并有连续的偏导数,且
\[\frac{\partial z}{\partial x} = -\frac{F_x'}{F_z'}, \quad \frac{\partial z}{\partial y} = -\frac{F_y'}{F_z'}. \tag{8.6}\](1)求由方程 \(F(x,y,z) = 0\) 确定的隐函数 \(z = z(x,y)\) 的一阶偏导数的方法
方法 \(1^{\circ}\) 由 \(F(x,y,z(x,y)) = 0\) 分别对自变量 \(x,y\) 求偏导数,应用复合函数求导法得
\[F_x' + F_z' \frac{\partial z}{\partial x} = 0, \quad F_y' + F_z' \frac{\partial z}{\partial y} = 0,\]分别解出 \(\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}\),就得(8.6)。
方法 \(2^{\circ}\) 利用一阶全微分形式不变性。对方程 \(F(x,y,z) = 0\) 两边求全微分得
\[\mathrm{d}F(x, y, z) = 0, \quad \text{即} \quad F_x' \mathrm{d}x + F_y' \mathrm{d}y + F_z' \mathrm{d}z = 0\]从而当 \(F_{z}^{\prime}\neq 0\) 时 \(\mathrm{d}z = -\left(\frac{F_x'}{F_z'}\mathrm{d}x + \frac{F_y'}{F_z'}\mathrm{d}y\right)\);于是有 \(\frac{\partial z}{\partial x} = -\frac{F_x'}{F_z'}\),\(\frac{\partial z}{\partial y} = -\frac{F_y'}{F_z'}\)。
方法 \(3^{\circ}\) 直接代公式(8.6)求出 \(\frac{\partial z}{\partial x}\) 与 \(\frac{\partial z}{\partial y}\)。
(2)求由方程 \(F(x, y, z) = 0\) 确定的隐函数 \(z = z(x, y)\) 的二阶偏导数的方法
若函数 \(F(x,y,z)\) 具有二阶连续偏导数,则隐函数 \(z = z(x,y)\) 也具有二阶连续偏导数,此时还可求 \(z = z(x,y)\) 的二阶偏导数。必须注意:上面的 \(F_{x}^{\prime},F_{y}^{\prime},F_{z}^{\prime}\) 仍然是 \(x,y,z\) 的函数,而 \(z\) 又是 \(x,y\) 的函数。下面求 \(\frac{\partial^2z}{\partial x^2}\):
方法 \(1^{\circ}\) 将 \(F_{x}^{\prime} + F_{z}^{\prime}\frac{\partial z}{\partial x} = 0\) 两边对 \(x\) 求偏导数。先改写成 \(F_{1}^{\prime} + F_{3}^{\prime}\frac{\partial z}{\partial x} = 0\),两边对 \(x\) 求偏导数得
\[\frac{\partial}{\partial x} \left(F_1'\right) + \frac{\partial}{\partial x} \left(F_3'\right) \frac{\partial z}{\partial x} + F_3' \frac{\partial^2 z}{\partial x^2} = 0,\]即
\[F_{11}'' + F_{13}''\frac{\partial z}{\partial x} +\left(F_{31}'' + F_{33}''\frac{\partial z}{\partial x}\right)\frac{\partial z}{\partial x} +F_3'\frac{\partial^2z}{\partial x^2} = 0,\]移项,得
\[\frac{\partial^2z}{\partial x^2} = -\left[F_{11}'' + 2F_{13}''\frac{\partial z}{\partial x} +F_{33}''\left(\frac{\partial z}{\partial x}\right)^2\right] / F_3'\]将 \(\frac{\partial z}{\partial x}\) 的表达式代入得
\[\frac{\partial^2z}{\partial x^2} = [2F_{13}''F_1'F_3' - F_{11}''(F_3')^2 -F_{33}''(F_1')^2 ] / (F_3')^3, \tag{8.7}\]或
\[\frac{\partial^2z}{\partial x^2} = \left[2\frac{\partial^2F}{\partial x\partial z}\frac{\partial F}{\partial x}\frac{\partial F}{\partial z} -\frac{\partial^2F}{\partial x^2}\left(\frac{\partial F}{\partial z}\right)^2 -\frac{\partial^2F}{\partial z^2}\left(\frac{\partial F}{\partial x}\right)^2\right]\Bigg{/}\left(\frac{\partial F}{\partial z}\right)^3. \tag{8.8}\]方法 \(2^{\circ}\) 将 \(\frac{\partial z}{\partial x}\) 的表达式(8.6)再对 \(x\) 求偏导数:
\[\begin{aligned} \frac{\partial^2 z}{\partial x^2} &= \frac{\partial}{\partial x} \left(-\frac{F_x'}{F_z'}\right) = \frac{\partial}{\partial x} \left(-\frac{F_1'}{F_3'}\right) = -\frac{\frac{\partial}{\partial x} \left(F_1'\right) F_3' - F_1' \frac{\partial}{\partial x} \left(F_3'\right)}{\left(F_3'\right)^2} \\ &= -\left[ \left(F_{11}'' + F_{13}'' \frac{\partial z}{\partial x}\right) F_3' - F_1' \left(F_{31}'' + F_{33}'' \frac{\partial z}{\partial x}\right) \right] / \left(F_3'\right)^2, \end{aligned}\]将 \(\frac{\partial z}{\partial x} = -F_1' / F_3'\) 代入,同样可得(8.7)或(8.8)。
(二)由方程组确定的隐函数求导法
1. 由方程组确定的一元隐函数求导法
设有3个变量2个方程构成的方程组
\[\left\{ \begin{array}{l} F(x, u, v) = 0, \\ G(x, u, v) = 0, \end{array} \right.\]其中 \(F, G\) 有连续偏导数。若在区间 \(I\) 上存在函数组 \(u = u(x), v = v(x)\) 满足该方程组,则说此方程组确定了隐函数 \(u = u(x), v = v(x)\)。若它们可导并求 \(\frac{\mathrm{d}u}{\mathrm{d}x}\) 与 \(\frac{\mathrm{d}v}{\mathrm{d}x}\),则由 \(F(x, u(x), v(x)) = 0\),\(G(x, u(x), v(x)) = 0\) 两边分别对 \(x\) 求导,应用复合函数求导法则可得
\[\left\{ \begin{array}{l} F_x' + F_u' \frac{\mathrm{d}u}{\mathrm{d}x} + F_v' \frac{\mathrm{d}v}{\mathrm{d}x} = 0, \\ G_x' + G_u' \frac{\mathrm{d}u}{\mathrm{d}x} + G_v' \frac{\mathrm{d}v}{\mathrm{d}x} = 0. \end{array} \right.\]这可看成是以 \(\frac{\mathrm{d}u}{\mathrm{d}x}, \frac{\mathrm{d}v}{\mathrm{d}x}\) 为未知量的二元一次方程组,可利用克莱姆法则求出 \(\frac{\mathrm{d}u}{\mathrm{d}x}\) 与 \(\frac{\mathrm{d}v}{\mathrm{d}x}\)。
2. 由方程组确定的二元隐函数求导法
设有4个变量2个方程构成的方程组
\[\left\{ \begin{array}{l} F(x, y, u, v) = 0, \\ G(x, y, u, v) = 0 \end{array} \right.\]确定隐函数 \(u = u(x, y), v = v(x, y)\),其中 \(F, G\) 有连续的偏导数。若 \(u(x, y), v(x, y)\) 可偏导并求 \(\frac{\partial u}{\partial x}\) 与 \(\frac{\partial v}{\partial x}\) 与 \(\frac{\partial u}{\partial y}\),则由 \(F(x, y, u(x, y), v(x, y)) = 0\),\(G(x, y, u(x, y), v(x, y)) = 0\) 两边分别对 \(x, y\) 求偏导数,应用复合函数求导法则即得
\[\left\{ \begin{array}{l} F_x' + F_u' \frac{\partial u}{\partial x} + F_v' \frac{\partial v}{\partial x} = 0, \\ G_x' + G_u' \frac{\partial u}{\partial x} + G_v' \frac{\partial v}{\partial x} = 0, \end{array} \right. \quad \text{或} \quad \left\{ \begin{array}{l} F_y' + F_u' \frac{\partial u}{\partial y} + F_v' \frac{\partial v}{\partial y} = 0, \\ G_y' + G_u' \frac{\partial u}{\partial y} + G_v' \frac{\partial v}{\partial y} = 0. \end{array} \right.\]这分别可看成是以 \(\frac{\partial u}{\partial x}\) 与 \(\frac{\partial v}{\partial x}\)(或 \(\frac{\partial u}{\partial y}\) 与 \(\frac{\partial v}{\partial y}\))的二元一次方程组,可利用克莱姆法则求出 \(\frac{\partial u}{\partial x}\) 与 \(\frac{\partial v}{\partial x}\)(或 \(\frac{\partial u}{\partial y}\) 与 \(\frac{\partial v}{\partial y}\))。
【例8.8】 设 \(u = f(x,y,z,t)\) 关于各变量均有连续偏导数,而其中由方程组
\[\left\{ \begin{array}{l} y^2 + y z - z t^2 = 0, \\ t e^z + z \sin t = 0 \end{array} \right. \tag{1}\]确定 \(z,t\) 为 \(y\) 的函数,求 \(\frac{\partial u}{\partial x}\) 与 \(\frac{\partial u}{\partial y}\)。
【解】 注意 \(z = z(y), t = t(y)\),于是
\[\left\{ \begin{array}{l} \frac{\partial u}{\partial x} = \frac{\partial f}{\partial x}, \\ \frac{\partial u}{\partial y} = \frac{\partial f}{\partial y} + \frac{\partial f}{\partial z} \frac{\mathrm{d}z}{\mathrm{d}y} + \frac{\partial f}{\partial t} \frac{\mathrm{d}t}{\mathrm{d}y}. \end{array} \right. \tag{2}\]因此,我们还要求 \(\frac{\mathrm{d}z}{\mathrm{d}y}\) 与 \(\frac{\mathrm{d}t}{\mathrm{d}y}\),将方程组 ① 两边对 \(y\) 求导得
\[\left\{ \begin{array}{l} 2y + z + y \frac{\mathrm{d}z}{\mathrm{d}y} - t^2 \frac{\mathrm{d}z}{\mathrm{d}y} - 2zt \frac{\mathrm{d}t}{\mathrm{d}y} = 0, \\ t\mathrm{e}^z \frac{\mathrm{d}z}{\mathrm{d}y} + \mathrm{e}^z \frac{\mathrm{d}t}{\mathrm{d}y} + \sin t \frac{\mathrm{d}z}{\mathrm{d}y} + z \cos t \frac{\mathrm{d}t}{\mathrm{d}y} = 0. \end{array} \right.\] \[\Rightarrow \quad (y - t^2) \frac{\mathrm{d}z}{\mathrm{d}y} - 2zt \frac{\mathrm{d}t}{\mathrm{d}y} = -(2y + z), \quad (t\mathrm{e}^z + \sin t) \frac{\mathrm{d}z}{\mathrm{d}y} + (\mathrm{e}^z + z \cos t) \frac{\mathrm{d}t}{\mathrm{d}y} = 0.\]记系数行列式为 \(W = (y - t^2)(\mathrm{e}^z + z\cos t) + 2zt(te^z + \sin t)\),则
\[\frac{\mathrm{d}z}{\mathrm{d}y} = \left| \begin{array}{cc} -(2y + z) & -2zt \\ 0 & \mathrm{e}^z + z \cos t \end{array} \right| / W = \frac{-(2y + z)(\mathrm{e}^z + z \cos t)}{W},\] \[\frac{\mathrm{d}t}{\mathrm{d}y} = \left| \begin{array}{cc} y - t^2 & -(2y + z) \\ t\mathrm{e}^z + \sin t & 0 \end{array} \right| / W = \frac{(2y + z)(t\mathrm{e}^z + \sin t)}{W},\]代入 ② 得
\[\frac{\partial u}{\partial y} = \frac{\partial f}{\partial y} + \frac{2y + z}{W}\left[\frac{\partial f}{\partial t}(te^z + \sin t) - \frac{\partial f}{\partial z}(e^z + z\cos t)\right].\]练习题
例题1
设方程 \(e^{x+y} + xy - 1 = 0\) 确定隐函数 \(y = y(x)\),求 \(\frac{\mathrm{d}y}{\mathrm{d}x}\)。
题目解答
令 \(F(x, y) = e^{x+y} + xy - 1\)。
计算偏导数:
\(F_x' = e^{x+y} + y\),
\(F_y' = e^{x+y} + x\)。
由隐函数求导公式:
例题2
设方程 \(x^2 + y^2 + z^2 - 4z = 0\) 确定隐函数 \(z = z(x, y)\),求 \(\frac{\partial z}{\partial x}\) 和 \(\frac{\partial z}{\partial y}\)。
题目解答
令 \(F(x, y, z) = x^2 + y^2 + z^2 - 4z\)。
计算偏导数:
\(F_x' = 2x\),
\(F_y' = 2y\),
\(F_z' = 2z - 4\)。
由隐函数求导公式:
例题3
设方程 \(F(x, y, z) = x^2 + y^2 + z^2 - 1 = 0\) 确定隐函数 \(z = z(x, y)\),求 \(\frac{\partial^2 z}{\partial x^2}\)。
题目解答
先求一阶偏导:
\(F_x' = 2x\), \(F_y' = 2y\), \(F_z' = 2z\),
对 \(\frac{\partial z}{\partial x}\) 再对 \(x\) 求偏导:
\[\frac{\partial^2 z}{\partial x^2} = \frac{\partial}{\partial x}\left(-\frac{x}{z}\right) = -\frac{1 \cdot z - x \cdot \frac{\partial z}{\partial x}}{z^2} = -\frac{z - x\left(-\frac{x}{z}\right)}{z^2} = -\frac{z + \frac{x^2}{z}}{z^2} = -\frac{z^2 + x^2}{z^3}.\]由原方程 \(x^2 + y^2 + z^2 = 1\),得 \(x^2 + z^2 = 1 - y^2\),但更直接地:
\[\frac{\partial^2 z}{\partial x^2} = -\frac{1 - y^2}{z^3}.\]例题4
设方程组
\[\begin{cases} x + u + v = 1, \\ x^2 + u^2 + v^2 = 3 \end{cases}\]确定隐函数 \(u = u(x)\), \(v = v(x)\),求 \(\frac{\mathrm{d}u}{\mathrm{d}x}\) 和 \(\frac{\mathrm{d}v}{\mathrm{d}x}\)。
题目解答
令 \(F(x, u, v) = x + u + v - 1\), \(G(x, u, v) = x^2 + u^2 + v^2 - 3\)。
计算偏导:
\(F_x' = 1\), \(F_u' = 1\), \(F_v' = 1\),
\(G_x' = 2x\), \(G_u' = 2u\), \(G_v' = 2v\)。
对 \(x\) 求导得方程组:
即:
\[\begin{cases} \frac{\mathrm{d}u}{\mathrm{d}x} + \frac{\mathrm{d}v}{\mathrm{d}x} = -1, \\ u \frac{\mathrm{d}u}{\mathrm{d}x} + v \frac{\mathrm{d}v}{\mathrm{d}x} = -x. \end{cases}\]系数行列式 \(W = \begin{vmatrix} 1 & 1 \\ u & v \end{vmatrix} = v - u\)。
由克莱姆法则:
例题5
设方程组
\[\begin{cases} x^2 + y^2 + u^2 - v^2 = 0, \\ x + y + u + v = 0 \end{cases}\]确定隐函数 \(u = u(x, y)\), \(v = v(x, y)\),求 \(\frac{\partial u}{\partial x}\) 和 \(\frac{\partial v}{\partial x}\)。
题目解答
令 \(F(x, y, u, v) = x^2 + y^2 + u^2 - v^2\), \(G(x, y, u, v) = x + y + u + v\)。
计算偏导:
\(F_x' = 2x\), \(F_u' = 2u\), \(F_v' = -2v\),
\(G_x' = 1\), \(G_u' = 1\), \(G_v' = 1\)。
对 \(x\) 求偏导得方程组:
即:
\[\begin{cases} u \frac{\partial u}{\partial x} - v \frac{\partial v}{\partial x} = -x, \\ \frac{\partial u}{\partial x} + \frac{\partial v}{\partial x} = -1. \end{cases}\]系数行列式 \(W = \begin{vmatrix} u & -v \\ 1 & 1 \end{vmatrix} = u + v\)。
由克莱姆法则: