Skip to Content
👋 欢迎来到考研学堂! 了解详情
高等数学NEW第八章 多元函数微分学第八章 多元函数微分学

第八章 多元函数微分学


练习题

例题1

设函数 \(f(x, y) = x^2 + 3xy + y^2\),求其在点 \((1, 2)\) 处的偏导数 \(f_x\)\(f_y\)

解答
首先,计算偏导数 \(f_x\)

\[f_x = \frac{\partial}{\partial x}(x^2 + 3xy + y^2) = 2x + 3y\]

在点 \((1, 2)\) 处:

\[f_x(1, 2) = 2(1) + 3(2) = 2 + 6 = 8\]

接着,计算偏导数 \(f_y\)

\[f_y = \frac{\partial}{\partial y}(x^2 + 3xy + y^2) = 3x + 2y\]

在点 \((1, 2)\) 处:

\[f_y(1, 2) = 3(1) + 2(2) = 3 + 4 = 7\]

因此,\(f_x(1, 2) = 8\)\(f_y(1, 2) = 7\)


例题2

设函数 \(z = e^{xy}\),求全微分 \(dz\)

解答
全微分公式为 \(dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy\)
首先,计算偏导数:

\[\frac{\partial z}{\partial x} = \frac{\partial}{\partial x}(e^{xy}) = y e^{xy}\] \[\frac{\partial z}{\partial y} = \frac{\partial}{\partial y}(e^{xy}) = x e^{xy}\]

代入全微分公式:

\[dz = y e^{xy} dx + x e^{xy} dy = e^{xy}(y dx + x dy)\]

因此,全微分 \(dz = e^{xy}(y dx + x dy)\)


例题3

设函数 \(f(x, y) = x^3 y + \sin(xy)\),验证其在点 \((0, 1)\) 处是否满足混合偏导数相等的条件,即检查 \(f_{xy} = f_{yx}\)

解答
首先,计算一阶偏导数:

\[f_x = \frac{\partial}{\partial x}(x^3 y + \sin(xy)) = 3x^2 y + y \cos(xy)\] \[f_y = \frac{\partial}{\partial y}(x^3 y + \sin(xy)) = x^3 + x \cos(xy)\]

接着,计算二阶混合偏导数:

\[f_{xy} = \frac{\partial}{\partial y}(f_x) = \frac{\partial}{\partial y}(3x^2 y + y \cos(xy)) = 3x^2 + \cos(xy) - xy \sin(xy)\] \[f_{yx} = \frac{\partial}{\partial x}(f_y) = \frac{\partial}{\partial x}(x^3 + x \cos(xy)) = 3x^2 + \cos(xy) - xy \sin(xy)\]

在点 \((0, 1)\) 处:

\[f_{xy}(0, 1) = 3(0)^2 + \cos(0) - (0)(1) \sin(0) = 0 + 1 - 0 = 1\] \[f_{yx}(0, 1) = 3(0)^2 + \cos(0) - (0)(1) \sin(0) = 0 + 1 - 0 = 1\]

由于 \(f_{xy}(0, 1) = f_{yx}(0, 1) = 1\),混合偏导数在点 \((0, 1)\) 处相等,满足条件。


例题4

设函数 \(u = x^2 + y^2 + z^2\),其中 \(x = t\)\(y = t^2\)\(z = t^3\),求 \(\frac{du}{dt}\)\(t = 1\) 处的值。

解答
使用链式法则:

\[\frac{du}{dt} = \frac{\partial u}{\partial x} \frac{dx}{dt} + \frac{\partial u}{\partial y} \frac{dy}{dt} + \frac{\partial u}{\partial z} \frac{dz}{dt}\]

计算各偏导数和导数:

\[\frac{\partial u}{\partial x} = 2x, \quad \frac{\partial u}{\partial y} = 2y, \quad \frac{\partial u}{\partial z} = 2z\] \[\frac{dx}{dt} = 1, \quad \frac{dy}{dt} = 2t, \quad \frac{dz}{dt} = 3t^2\]

代入:

\[\frac{du}{dt} = 2x \cdot 1 + 2y \cdot 2t + 2z \cdot 3t^2 = 2x + 4ty + 6t^2 z\]

\(x = t\)\(y = t^2\)\(z = t^3\) 代入:

\[\frac{du}{dt} = 2t + 4t(t^2) + 6t^2(t^3) = 2t + 4t^3 + 6t^5\]

\(t = 1\) 处:

\[\frac{du}{dt} = 2(1) + 4(1)^3 + 6(1)^5 = 2 + 4 + 6 = 12\]

因此,\(\frac{du}{dt} \bigg|_{t=1} = 12\)

Last updated on