Skip to Content
👋 欢迎来到考研学堂! 了解详情

二、基本积分表与积分法则

(一)基本积分表

因为求不定积分与求导函数是互逆关系,而且不定积分就是全体原函数,所以对应于基本初等函数的导数公式,就有相应的基本积分公式(公式中 \(C\) 是任意常数):

(1) \(\int 0 \cdot \mathrm{d}x = C\)
(2) \(\int x^{k} \mathrm{d}x = \frac{1}{1 + k} x^{k + 1} + C \quad (k \neq -1)\)
(3) \(\int \frac{1}{x} \mathrm{d}x = \ln |x| + C\)
(4) \(\int a^{x} \mathrm{d} x = \frac{a^{x}}{\ln a} + C (a > 0\)\(a \neq 1)\)
\(\int \mathrm{e}^{x}\mathrm{d}x = \mathrm{e}^{x} + C\)
(5) \(\int \cos x \, \mathrm{d}x = \sin x + C\)
\(\int \sin x\mathrm{d}x = -\cos x + C\)
(6) \(\int \frac{1}{\cos^2 x} \mathrm{d}x = \int \sec^2 x \mathrm{d}x = \tan x + C\)
\(\int \frac{1}{\sin^2 x} \mathrm{d}x = \int \csc^2 x \mathrm{d}x = -\cot x + C\)
(7) \(\int \frac{\mathrm{d}x}{\sqrt{1 - x^2}} = \arcsin x + C\)
\(\int \frac{\mathrm{d}x}{1 + x^2} = \arctan x + C\)

基本积分表的扩充:

(8) \(\int \frac{\mathrm{d}x}{\sqrt{x^2 \pm a^2}} = \ln |x + \sqrt{x^2 \pm a^2}| + C\)
(9) \(\int \sqrt{a^2 - x^2} \, \mathrm{d}x = \frac{a^2}{2} \arcsin \frac{x}{a} + \frac{x}{2} \sqrt{a^2 - x^2} + C\)
(10) \(\int \sqrt{x^2 \pm a^2} \, \mathrm{d}x = \frac{x}{2} \sqrt{x^2 \pm a^2} \pm \frac{a^2}{2} \ln |x + \sqrt{x^2 \pm a^2}| + C\)

其中常数 \(a > 0\)

【注】基本积分表在积分计算的作用是,通过积分计算法则,把所求积分转化为积分表中的情形。

(二)积分法则

最基本的积分方法是分项积分法、分段积分法、换元积分法和分部积分法。而换元积分法对不定积分又分第一换元积分法(凑微分法)与第二换元积分法。当被积函数或原函数分段表示时要用分段积分法。

1. 分项积分法

我们常把一个复杂的函数分解成几个简单的函数之和,例如: \(f(x) = k_{1}g_{1}(x) + k_{2}g_{2}(x)\) ,若能求出右端两个函数 \(g_{1}(x)\)\(g_{2}(x)\) 的积分,则应用不定积分的基本性质

\[\int f (x) \mathrm {d} x = k _ {1} \int g _ {1} (x) \mathrm {d} x + k _ {2} \int g _ {2} (x) \mathrm {d} x,\]

就可求出函数 \(f(x)\) 的不定积分 \(\int f(x)\mathrm{d}x\) ,这就是分项积分法。对定积分也有类似的分项积分法。

【例3.7】 求下列不定积分:

(I) \(\int \frac{1 + \cos^2 x}{1 + \cos 2x} \, \mathrm{d}x\)

(Ⅱ) \(\int \frac{1}{x^4(1 + x^2)}\mathrm{d}x\)

(Ⅲ) \(\int \frac{x}{\sqrt{x} - \sqrt{x - 1}}\mathrm{d}x\)

【解】(I)利用三角函数的倍角公式: \(1 + \cos 2x = 2\cos^2 x\) 进行分项得

\[\int \frac {1 + \cos^ {2} x}{1 + \cos 2 x} d x = \int \frac {1 + \cos^ {2} x}{2 \cos^ {2} x} d x = \frac {1}{2} \int \frac {d x}{\cos^ {2} x} + \frac {1}{2} \int d x = \frac {1}{2} \tan x + \frac {1}{2} x + C.\]

(Ⅱ)利用加减同一项进行拆项得

\[\begin{aligned} \int \frac {\mathrm {d} x}{x ^ {4} \left(1 + x ^ {2}\right)} &= \int \frac {\left(1 + x ^ {2}\right) - x ^ {2}}{x ^ {4} \left(1 + x ^ {2}\right)} \mathrm {d} x = \int \frac {\mathrm {d} x}{x ^ {4}} - \int \frac {\left(1 + x ^ {2}\right) - x ^ {2}}{x ^ {2} \left(1 + x ^ {2}\right)} \mathrm {d} x \\ &= \int \frac {d x}{x ^ {4}} - \int \frac {d x}{x ^ {2}} + \int \frac {d x}{1 + x ^ {2}} = - \frac {1}{3 x ^ {3}} + \frac {1}{x} + \arctan x + C. \end{aligned}\]

(Ⅲ)将被积函数的分母有理化后得

\[J \xlongequal {\text {记}} \int \frac {x}{\sqrt {x} - \sqrt {x - 1}} \mathrm {d} x = \int \frac {x (\sqrt {x} + \sqrt {x - 1})}{(\sqrt {x}) ^ {2} - (\sqrt {x - 1}) ^ {2}} \mathrm {d} x = \int x ^ {\frac {1}{2}} \mathrm {d} x + \int x \sqrt {x - 1} \mathrm {d} x.\]

再将第二项拆项得

\[J = \int x ^ {\frac {1}{2}} d x + \int (x - 1) ^ {\frac {1}{2}} d x + \int (x - 1) ^ {\frac {1}{2}} d x = \frac {2}{5} x ^ {\frac {1}{2}} + \frac {2}{5} (x - 1) ^ {\frac {1}{2}} + \frac {2}{3} (x - 1) ^ {\frac {1}{2}} + C.\]

2. 分段积分法

(1) 定积分的分段积分法

分段函数的定积分要分段进行计算,这里重要的是弄清积分限与分段函数的分界点之间的位置关系,以便对定积分进行正确分段。

被积函数中含有绝对值时,要去掉绝对值符号化为不含绝对值的分段函数并分段计算其定积分。

【例3.8】 计算下列定积分:

(I) \(\int_{-\frac{1}{x}}^{\frac{1}{x}}(x + 1)\min \left\{\frac{1}{2},\cos x\right\} \mathrm{d}x\)
(Ⅱ) \(\int_0^2 f(x - 1)\mathrm{d}x\) ,其中 \(f(x) = \left\{ \begin{array}{ll}\frac{1}{1 + x}, & x\geqslant 0,\\ \frac{1}{1 + \mathrm{e}^x}, & x < 0. \end{array} \right.\)

【解】(I)由于 \(\min \left\{\frac{1}{2},\cos x\right\}\) 为偶函数,在 \(\left[0,\frac{\pi}{2}\right]\) 上的分界点为 \(\frac{\pi}{3}\) ,所以

\[\begin{aligned} \int_ {- \frac {\pi}{2}} ^ {\frac {\pi}{2}} (x + 1) \min \left\{\frac {1}{2}, \cos x \right\} d x &= \int_ {- \frac {\pi}{2}} ^ {\frac {\pi}{2}} x \min \left\{\frac {1}{2}, \cos x \right\} d x + 2 \int_ {0} ^ {\frac {\pi}{2}} \min \left\{\frac {1}{2}, \cos x \right\} d x \\ &= 0 + 2 \left(\int_ {0} ^ {\frac {\pi}{2}} \frac {1}{2} \mathrm {d} x + \int_ {\frac {\pi}{2}} ^ {\frac {\pi}{2}} \cos x \mathrm {d} x\right) = 2 \left(\frac {1}{2} \cdot \frac {\pi}{3} + \sin x \Big | _ {\frac {\pi}{2}} ^ {\frac {\pi}{2}}\right) = \frac {\pi}{3} + 2 - \sqrt {3}. \end{aligned}\]

(Ⅱ)由于分段函数 \(f(x)\) 的分界点为0,所以,令 \(t = x - 1\) 后,有

\[\begin{aligned} \int_ {0} ^ {2} f (x - 1) \mathrm {d} x &= \int_ {- 1} ^ {1} f (t) \mathrm {d} t = \int_ {- 1} ^ {0} \frac {\mathrm {d} x}{1 + \mathrm {e} ^ {x}} + \int_ {0} ^ {1} \frac {\mathrm {d} x}{1 + x} = \int_ {- 1} ^ {0} \frac {\mathrm {e} ^ {- x} \mathrm {d} x}{1 + \mathrm {e} ^ {- x}} + \ln (1 + x) \Bigg | _ {0} ^ {1} \\ &= - \ln (1 + e ^ {- x}) \left| _ {- 1} ^ {0} + \ln 2 = \ln (1 + e) \right. \end{aligned}\]

若被积函数的原函数是分段表示的,则也要用分段积分法求定积分。

【例3.9】 计算定积分 \(I = \int_{0}^{\pi}\frac{\mathrm{d}x}{a^{2}\sin^{2}x + b^{2}\cos^{2}x}\)\(a > 0,b > 0)\)

【分析与求解】 在区间 \([0,\pi ]\) 上按如下方式用牛顿-莱布尼兹公式是错误的。即

\[I = \int_ {0} ^ {\pi} \frac {\mathrm {d} x}{a ^ {2} \sin^ {2} x + b ^ {2} \cos^ {2} x} = \int_ {0} ^ {\pi} \frac {\mathrm {d} \left(\frac {a}{b} \tan x\right)}{a b \left[ 1 + \left(\frac {a}{b} \tan x\right) ^ {2} \right]} = \frac {1}{a b} \arctan \left(\frac {a}{b} \tan x\right) \Bigg | _ {0} ^ {\pi} = 0.\]

因为 \(\frac{1}{ab}\arctan\left(\frac{a}{b}\tan x\right)\)\(x = \frac{\pi}{2}\) 无定义,它只是分别在 \(\left[0, \frac{\pi}{2}\right), \left(\frac{\pi}{2}, \pi\right]\) 上是 \(\frac{1}{a^2\sin^2x + b^2\cos^2x}\) 的原函数,因而不能在 \([0, \pi]\) 上对积分 \(I\) 应用牛顿-莱布尼兹公式。但可按如下方法计算:

\[\begin{aligned} I &= \int_ {0} ^ {\frac {\pi}{2}} \frac {\mathrm {d} x}{a ^ {2} \sin^ {2} x + b ^ {2} \cos^ {2} x} + \int_ {\frac {\pi}{2}} ^ {\pi} \frac {\mathrm {d} x}{a ^ {2} \sin^ {2} x + b ^ {2} \cos^ {2} x} \\ &= \left. \frac {1}{a b} \arctan \left(\frac {a}{b} \tan x\right) \right| _ {0} ^ {\frac {\pi}{2} - 0} + \frac {1}{a b} \arctan \left(\frac {a}{b} \tan x\right) \Bigg | _ {\frac {\pi}{2} + 0} ^ {\pi} = \frac {1}{a b} \cdot \frac {\pi}{2} + \frac {1}{a b} \cdot \frac {\pi}{2} = \frac {\pi}{a b}. \end{aligned}\]

这就是分段积分后用了推广的牛顿-莱布尼兹公式即【定理3.3】的推论

评注 ① 注意被积函数以 \(\pi\) 为周期且是偶函数,于是有

\[\begin{aligned} I &= \int_ {0} ^ {\pi} \frac {\mathrm {d} x}{a ^ {2} \sin^ {2} x + b ^ {2} \cos^ {2} x} = \int_ {- \frac {\pi}{2}} ^ {\frac {\pi}{2}} \frac {\mathrm {d} x}{a ^ {2} \sin^ {2} x + b ^ {2} \cos^ {2} x} = 2 \int_ {0} ^ {\frac {\pi}{2}} \frac {\mathrm {d} (\tan x)}{b ^ {2} + a ^ {2} \tan^ {2} x} \\ &= 2 \int_ {0} ^ {\frac {\pi}{2}} \frac {\mathrm {d} \left(\frac {a}{b} \tan x\right)}{a b \left[ 1 + \left(\frac {a}{b} \tan x\right) ^ {2} \right]} = \left. \frac {2}{a b} \arctan \left(\frac {a}{b} \tan x\right) \right| _ {0} ^ {\frac {\pi}{2} - 0} = \frac {\pi}{a b}. \end{aligned}\]

② 按不定积分法,我们求得

\[\int \frac {\mathrm {d} x}{a ^ {2} \sin^ {2} x + b ^ {2} \cos^ {2} x} = \int \frac {1}{a b} \frac {\mathrm {d} \left(\frac {a}{b} \tan x\right)}{1 + \left(\frac {a}{b} \tan x\right) ^ {2}} = \frac {1}{a b} \arctan \left(\frac {a}{b} \tan x\right) + C.\]

这个答案就算可以了。 \(f(x) = \frac{1}{a^2\sin^2x + b^2\cos^2x}\)\([0, \pi]\) 上连续,一定存在原函数,而 \(\frac{1}{ab}\arctan \left(\frac{a}{b}\tan x\right)\) 并不是 \(f(x)\)\([0, \pi]\) 上的一个原函数,因为它在 \(x = \frac{\pi}{2}\) 无定义,只是分别在 \([0, \frac{\pi}{2})\)\(\left(\frac{\pi}{2}, \pi\right]\)\(f(x)\) 的一个原函数。我们可按连续拼接法得到 \(f(x)\)\([0, \pi]\) 上的一个原函数,即

\[F (x) = \left\{ \begin{array}{l l} \frac {1}{a b} \left[ \arctan \left(\frac {a}{b} \tan x\right) - \frac {\pi}{2} \right], & x \in \left[ 0, \frac {\pi}{2}\right), \\ 0, & x = \frac {\pi}{2}, \\ \frac {1}{a b} \left[ \arctan \left(\frac {a}{b} \tan x\right) + \frac {\pi}{2} \right], & x \in \left(\frac {\pi}{2}, \pi \right]. \end{array} \right.\]

(2) 不定积分的分段积分法

\(f(x) = \left\{ \begin{array}{ll}g(x), & x\leqslant x_0,\\ h(x), & x\geqslant x_0, \end{array} \right.\) 在含 \(x_0\) 的区间 \(I\) 上连续,其中 \(g(x_0) = h(x_0)\) ,如何求 \(\int f(x)\mathrm{d}x\)

方法 \(1^{\circ}\) 连续拼接法。首先分别求出

\[\int g (x) \mathrm {d} x = G (x) + C (x \leqslant x _ {0}), \quad \int h (x) \mathrm {d} x = H (x) + C (x \geqslant x _ {0});\]

然后将它们连续拼接,即令

\[F (x) = \left\{ \begin{array}{c c} {G (x),} & {x \leqslant x _ {0},} \\ {H (x) + C _ {0},} & {x > x _ {0},} \end{array} \right. \text {选} C _ {0} \text {使 得} H (x _ {0}) + C _ {0} = G (x _ {0}),\]

\(F(x)\)\(f(x)\) 在区间 \(I\) 上的一个原函数(参见本章题型四),于是有

\[\int f (x) \mathrm {d} x = F (x) + C.\]

方法 \(2^{\circ}\)


练习题

例题1

题目内容
计算不定积分:

\[\int \frac{x^3 + 2x + 1}{x^2 + 1} \, \mathrm{d}x\]

题目解答
首先,通过多项式除法将有理函数分解:

\[\frac{x^3 + 2x + 1}{x^2 + 1} = x + \frac{x + 1}{x^2 + 1}\]

因此,

\[\int \frac{x^3 + 2x + 1}{x^2 + 1} \, \mathrm{d}x = \int x \, \mathrm{d}x + \int \frac{x}{x^2 + 1} \, \mathrm{d}x + \int \frac{1}{x^2 + 1} \, \mathrm{d}x\]

分别计算:

  1. \(\int x \, \mathrm{d}x = \frac{1}{2}x^2 + C_1\)
  2. \(\int \frac{x}{x^2 + 1} \, \mathrm{d}x = \frac{1}{2} \int \frac{2x}{x^2 + 1} \, \mathrm{d}x = \frac{1}{2} \ln |x^2 + 1| + C_2\)
  3. \(\int \frac{1}{x^2 + 1} \, \mathrm{d}x = \arctan x + C_3\)
    合并结果:
\[\int \frac{x^3 + 2x + 1}{x^2 + 1} \, \mathrm{d}x = \frac{1}{2}x^2 + \frac{1}{2} \ln |x^2 + 1| + \arctan x + C\]

例题2

题目内容
计算定积分:

\[\int_{0}^{2} |x - 1| \, \mathrm{d}x\]

题目解答
被积函数是分段函数:

\[|x - 1| = \begin{cases} 1 - x, & 0 \leq x \leq 1 \\ x - 1, & 1 < x \leq 2 \end{cases}\]

分段计算积分:

\[\int_{0}^{2} |x - 1| \, \mathrm{d}x = \int_{0}^{1} (1 - x) \, \mathrm{d}x + \int_{1}^{2} (x - 1) \, \mathrm{d}x\]

计算各部分:

\[\int_{0}^{1} (1 - x) \, \mathrm{d}x = \left[ x - \frac{x^2}{2} \right]_{0}^{1} = 1 - \frac{1}{2} = \frac{1}{2}\] \[\int_{1}^{2} (x - 1) \, \mathrm{d}x = \left[ \frac{x^2}{2} - x \right]_{1}^{2} = \left(2 - 2\right) - \left(\frac{1}{2} - 1\right) = \frac{1}{2}\]

总和:

\[\int_{0}^{2} |x - 1| \, \mathrm{d}x = \frac{1}{2} + \frac{1}{2} = 1\]

例题3

题目内容
使用换元积分法计算:

\[\int \frac{\mathrm{d}x}{\sqrt{4 - x^2}}\]

题目解答
\(x = 2 \sin t\),则 \(\mathrm{d}x = 2 \cos t \, \mathrm{d}t\),且 \(\sqrt{4 - x^2} = 2 \cos t\)

\[\int \frac{\mathrm{d}x}{\sqrt{4 - x^2}} = \int \frac{2 \cos t}{2 \cos t} \, \mathrm{d}t = \int \mathrm{d}t = t + C\]

代回 \(t = \arcsin \frac{x}{2}\)

\[\int \frac{\mathrm{d}x}{\sqrt{4 - x^2}} = \arcsin \frac{x}{2} + C\]

例题4

题目内容
使用分部积分法计算:

\[\int x \ln x \, \mathrm{d}x\]

题目解答
\(u = \ln x\)\(\mathrm{d}v = x \, \mathrm{d}x\),则 \(\mathrm{d}u = \frac{1}{x} \mathrm{d}x\)\(v = \frac{x^2}{2}\)

\[\int x \ln x \, \mathrm{d}x = \frac{x^2}{2} \ln x - \int \frac{x^2}{2} \cdot \frac{1}{x} \, \mathrm{d}x = \frac{x^2}{2} \ln x - \frac{1}{2} \int x \, \mathrm{d}x\] \[= \frac{x^2}{2} \ln x - \frac{1}{2} \cdot \frac{x^2}{2} + C = \frac{x^2}{2} \ln x - \frac{x^2}{4} + C\]

例题5

题目内容
计算定积分:

\[\int_{0}^{\pi} \frac{\mathrm{d}x}{1 + \sin^2 x}\]

题目解答
利用对称性和周期性。由于被积函数以 \(\pi\) 为周期且为偶函数:

\[\int_{0}^{\pi} \frac{\mathrm{d}x}{1 + \sin^2 x} = 2 \int_{0}^{\frac{\pi}{2}} \frac{\mathrm{d}x}{1 + \sin^2 x}\]

\(t = \tan x\),则 \(\mathrm{d}x = \frac{\mathrm{d}t}{1 + t^2}\),且 \(\sin^2 x = \frac{t^2}{1 + t^2}\)

\[\int \frac{\mathrm{d}x}{1 + \sin^2 x} = \int \frac{1}{1 + \frac{t^2}{1 + t^2}} \cdot \frac{\mathrm{d}t}{1 + t^2} = \int \frac{\mathrm{d}t}{1 + 2t^2}\] \[= \frac{1}{\sqrt{2}} \arctan (\sqrt{2} t) + C = \frac{1}{\sqrt{2}} \arctan (\sqrt{2} \tan x) + C\]

因此,

\[\int_{0}^{\pi} \frac{\mathrm{d}x}{1 + \sin^2 x} = 2 \left[ \frac{1}{\sqrt{2}} \arctan (\sqrt{2} \tan x) \right]_{0}^{\frac{\pi}{2}-0} = \sqrt{2} \cdot \frac{\pi}{2} = \frac{\pi}{\sqrt{2}}\]

注意在 \(x = \frac{\pi}{2}\) 处原函数不连续,需分段计算,但最终结果为 \(\frac{\pi}{\sqrt{2}}\)


例题6

题目内容
求递推公式:
\(I_n = \int x^n \mathrm{e}^x \, \mathrm{d}x\),推导 \(I_n\) 的递推关系。

题目解答
使用分部积分法,令 \(u = x^n\)\(\mathrm{d}v = \mathrm{e}^x \, \mathrm{d}x\),则 \(\mathrm{d}u = n x^{n-1} \, \mathrm{d}x\)\(v = \mathrm{e}^x\)

\[I_n = x^n \mathrm{e}^x - \int \mathrm{e}^x \cdot n x^{n-1} \, \mathrm{d}x = x^n \mathrm{e}^x - n I_{n-1}\]

因此,递推公式为:

\[I_n = x^n \mathrm{e}^x - n I_{n-1}\]

其中 \(I_0 = \int \mathrm{e}^x \, \mathrm{d}x = \mathrm{e}^x + C\)

Last updated on