Skip to Content
👋 欢迎来到考研学堂! 了解详情

四、积分计算技巧

掌握了积分法则之后,再掌握一些积分计算技巧,就可使某些计算更加灵活、简便。

求积分时常用到以下技巧:

  1. 利用定积分的几何意义直接得出某些定积分的值。若 \(\int_{a}^{b} f(x) \mathrm{d}x\) 是熟知的平面图形的面积,则由面积值就可得该定积分值。
  2. 利用对称区间上奇偶函数的积分性质(定理3.4)。
  3. 利用周期函数的积分性质(定理3.5)。
  4. 利用积分公式:
\[\int_{0}^{\frac{\pi}{2}} \sin^{n} x \mathrm{d} x = \int_{0}^{\frac{\pi}{2}} \cos^{n} x \mathrm{d} x = \begin{cases} \frac{n - 1}{n} \cdot \frac{n - 3}{n - 2} \cdot \frac{n - 5}{n - 4} \cdot \dots \cdot \frac{2}{3}, & n \geqslant 3 \text{为奇数}, \\ \frac{n - 1}{n} \cdot \frac{n - 3}{n - 2} \cdot \frac{n - 5}{n - 4} \cdot \dots \cdot \frac{1}{2} \cdot \frac{\pi}{2}, & n \geqslant 2 \text{为偶数}. \end{cases}\]
  1. 利用被积函数的分解与结合:被积函数的分解即分项积分法。另一方面,有时对 \(I = \int_{a}^{b} f(x) \, \mathrm{d}x\) 进行变量替换,将它转换为另一形式 \(I = \int_{a}^{b} g(x) \, \mathrm{d}x\),将它们结合在一起:\(2I = \int_{a}^{b} [f(x) + g(x)] \, \mathrm{d}x\) 即容易算出结果。

例3.20

求下列定积分:

(I)\(I = \int_{0}^{2\pi}\sqrt{1 + \sin x}\mathrm{d}x\)

(Ⅱ)\(J = \int_{a}^{b}x^{2}\sqrt{(x - a)(b - x)}\mathrm{d}x\)

(I)由于 \(\sqrt{1 + \sin x} = \sqrt{\left(\sin\frac{x}{2} + \cos\frac{x}{2}\right)^2} = \left|\sin \frac{x}{2} +\cos \frac{x}{2}\right| = \sqrt{2}\left|\sin \left(\frac{x}{2} +\frac{\pi}{4}\right)\right|\)

\[\begin{aligned} I &= \int_{0}^{2\pi} \sqrt{2} \left| \sin \left(\frac{x}{2} + \frac{\pi}{4}\right) \right| \mathrm{d}x \\ &\stackrel{t = \frac{x}{2} + \frac{\pi}{4}}{=} 2\sqrt{2} \int_{\frac{\pi}{4}}^{\pi + \frac{\pi}{4}} |\sin t| \mathrm{d}t \\ &\stackrel{\text{周期函数积分性质}}{=} 2\sqrt{2} \int_{0}^{\pi} |\sin t| \mathrm{d}t \\ &= 2\sqrt{2} \int_{0}^{\pi} \sin t \mathrm{d}t \\ &= 2\sqrt{2} \left(-\cos t\right) \Big|_{0}^{\pi} = 4\sqrt{2} \end{aligned}\]

(Ⅱ)由于 \(\sqrt{(x - a)(b - x)} = \sqrt{\left(\frac{b - a}{2}\right)^2 - \left(x - \frac{a + b}{2}\right)^2}\),故作平移变换:\(x - \frac{a + b}{2} = t\),并记 \(c = \frac{b - a}{2}\),则

\[\begin{aligned} J &= \int_{-c}^{c} \left(t + \frac{a + b}{2}\right)^{2} \sqrt{c^{2} - t^{2}} \mathrm{d}t \\ &= \int_{-c}^{c} t^{2} \sqrt{c^{2} - t^{2}} \mathrm{d}t + 2\frac{a + b}{2} \int_{-c}^{c} t \sqrt{c^{2} - t^{2}} \mathrm{d}t + \left(\frac{a + b}{2}\right)^{2} \int_{-c}^{c} \sqrt{c^{2} - t^{2}} \mathrm{d}t \\ &\stackrel{\text{奇函数在对称区间上的积分性质}}{\text{定积分的几何意义,半圆的面积}} \int_{-c}^{c} t^{2} \sqrt{c^{2} - t^{2}} \mathrm{d}t + 0 + \frac{(a + b)^{2}}{4} \cdot \frac{1}{2} \pi c^{2} \\ &= \frac{\pi}{32} (b - a)^{2} \left[ \frac{(b - a)^{2}}{4} + (a + b)^{2} \right] \end{aligned}\]

其中 \(\int_{-c}^{c}t^{2}\sqrt{c^{2} - t^{2}}\mathrm{d}t \stackrel{t = c\sin\theta}{=} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}c^{2}\sin^{2}\theta \cdot c^{2}\cos^{2}\theta \mathrm{d}\theta = 2c^{4}\int_{0}^{\frac{\pi}{2}}\sin^{2}\theta (1 - \sin^{2}\theta)\mathrm{d}\theta\)

\[= 2c^{4} \left(\frac{\pi}{4} - \frac{3 \cdot 1}{4 \cdot 2} \cdot \frac{\pi}{2}\right) = \frac{\pi}{8} c^{4}\]

例3.21

求下列定积分:

(I)\(I = \int_{0}^{\pi}\frac{x\sin x}{1 + \cos^{2}x}\mathrm{d}x\)

(Ⅱ)\(J = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}}\sin^{2}x\arctan e^{x}\mathrm{d}x\)

分析

积分 \(I = \int_{0}^{b}f(x)\mathrm{d}x\) 在变量替换 \(t = b - x\) 下积分区间保持不变,即

\[I = -\int_{b}^{0} f(b - t) \mathrm{d}t = \int_{0}^{b} f(b - t) \mathrm{d}t = \int_{0}^{b} f(b - x) \mathrm{d}x\]

于是 \(2I = \int_{0}^{b}[f(x) + f(b - x)]\mathrm{d}x\)。若右端易求,则就求出了 \(I\) 值。题(I)就是如此。

积分区间的对称性除了奇函数或偶函数带来方便之外,有时对某些其他函数也会带来方便。在对称区间的情形:\(I = \int_{-a}^{a} f(x) \, \mathrm{d}x\),若作变量替换 \(x = -t\),则积分区间保持不变,即 \(I = \int_{-a}^{a} f(-t) \, \mathrm{d}t\)

于是 \(2I = \int_{-a}^{a}[f(x) + f(-x)]\mathrm{d}x\)

若右端积分易算,则就求出了 \(I\) 的值。题(II)就是这样。

(I)\(I \xlongequal{x = \pi - t} \int_{0}^{\pi} \frac{(\pi - t) \sin (\pi - t)}{1 + \cos^{2} (\pi - t)} \, \mathrm{d}t = \int_{0}^{\pi} \frac{(\pi - x) \sin x}{1 + \cos^{2} x} \, \mathrm{d}x\)

\(\Rightarrow\) \(2I = \pi \int_{0}^{\pi}\frac{\sin x}{1 + \cos^{2}x}\mathrm{d}x = -\pi \int_{0}^{\pi}\frac{\mathrm{d}(\cos x)}{1 + \cos^{2}x} = -\pi \arctan \cos x\Big|_{0}^{\pi} = \frac{\pi^{2}}{2}\)

\(I = \frac{\pi^2}{4}\)

(Ⅱ)\(J \stackrel{x = -t}{=} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}}\sin^{2} (-t)\arctan e^{-t}\mathrm{d}t = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}}\sin^{2} x\arctan e^{-x}\mathrm{d}x\)

\(\Rightarrow\) \(2J = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}}\sin^{2}x(\arctan e^{x} + \arctan e^{-x})\mathrm{d}x = \frac{\pi}{2} \cdot 2\int_{0}^{\frac{\pi}{4}}\sin^{2}x\mathrm{d}x = \frac{\pi^{2}}{4}\)

\(\Rightarrow\) \(J = \frac{\pi^2}{8}\)


练习题

例题1

计算定积分:

\[I = \int_{0}^{\pi} \frac{x \sin x}{1 + \cos^2 x} \, \mathrm{d}x\]

解答
\(t = \pi - x\),则

\[I = \int_{0}^{\pi} \frac{(\pi - t) \sin (\pi - t)}{1 + \cos^2 (\pi - t)} \, \mathrm{d}t = \int_{0}^{\pi} \frac{(\pi - x) \sin x}{1 + \cos^2 x} \, \mathrm{d}x.\]

因此,

\[2I = \pi \int_{0}^{\pi} \frac{\sin x}{1 + \cos^2 x} \, \mathrm{d}x.\]

\(u = \cos x\),则 \(\mathrm{d}u = -\sin x \, \mathrm{d}x\),积分限变为 \(u(0) = 1\)\(u(\pi) = -1\),于是

\[\int_{0}^{\pi} \frac{\sin x}{1 + \cos^2 x} \, \mathrm{d}x = -\int_{1}^{-1} \frac{\mathrm{d}u}{1 + u^2} = \int_{-1}^{1} \frac{\mathrm{d}u}{1 + u^2} = \arctan u \Big|_{-1}^{1} = \frac{\pi}{4} - \left(-\frac{\pi}{4}\right) = \frac{\pi}{2}.\]

代入得

\[2I = \pi \cdot \frac{\pi}{2} = \frac{\pi^2}{2} \quad \Rightarrow \quad I = \frac{\pi^2}{4}.\]

例题2

计算定积分:

\[J = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \sin^2 x \cdot \arctan(e^x) \, \mathrm{d}x\]

解答
\(t = -x\),则

\[J = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \sin^2(-t) \cdot \arctan(e^{-t}) \, \mathrm{d}t = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \sin^2 x \cdot \arctan(e^{-x}) \, \mathrm{d}x.\]

因此,

\[2J = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \sin^2 x \left[ \arctan(e^x) + \arctan(e^{-x}) \right] \, \mathrm{d}x.\]

利用恒等式 \(\arctan(e^x) + \arctan(e^{-x}) = \frac{\pi}{2}\)(因为 \(e^x > 0\)),得

\[2J = \frac{\pi}{2} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \sin^2 x \, \mathrm{d}x.\]

由于 \(\sin^2 x\) 是偶函数,

\[\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \sin^2 x \, \mathrm{d}x = 2 \int_{0}^{\frac{\pi}{4}} \sin^2 x \, \mathrm{d}x = 2 \int_{0}^{\frac{\pi}{4}} \frac{1 - \cos 2x}{2} \, \mathrm{d}x = \int_{0}^{\frac{\pi}{4}} (1 - \cos 2x) \, \mathrm{d}x.\]

计算得

\[\int_{0}^{\frac{\pi}{4}} (1 - \cos 2x) \, \mathrm{d}x = \left[ x - \frac{\sin 2x}{2} \right]_{0}^{\frac{\pi}{4}} = \frac{\pi}{4} - \frac{1}{2}.\]

代入得

\[2J = \frac{\pi}{2} \left( \frac{\pi}{4} - \frac{1}{2} \right) = \frac{\pi^2}{8} - \frac{\pi}{4} \quad \Rightarrow \quad J = \frac{\pi^2}{16} - \frac{\pi}{8}.\]

例题3

计算定积分:

\[K = \int_{0}^{2\pi} \sqrt{1 + \sin x} \, \mathrm{d}x\]

解答
利用恒等式 \(\sqrt{1 + \sin x} = \sqrt{2} \left| \sin\left( \frac{x}{2} + \frac{\pi}{4} \right) \right|\),令 \(t = \frac{x}{2} + \frac{\pi}{4}\),则 \(\mathrm{d}x = 2 \, \mathrm{d}t\),积分限变为 \(t(0) = \frac{\pi}{4}\)\(t(2\pi) = \pi + \frac{\pi}{4}\)
于是

\[K = 2\sqrt{2} \int_{\frac{\pi}{4}}^{\pi + \frac{\pi}{4}} |\sin t| \, \mathrm{d}t.\]

由于 \(|\sin t|\) 是周期为 \(\pi\) 的函数,

\[\int_{\frac{\pi}{4}}^{\pi + \frac{\pi}{4}} |\sin t| \, \mathrm{d}t = \int_{0}^{\pi} |\sin t| \, \mathrm{d}t = \int_{0}^{\pi} \sin t \, \mathrm{d}t = -\cos t \Big|_{0}^{\pi} = 2.\]

因此,

\[K = 2\sqrt{2} \cdot 2 = 4\sqrt{2}.\]

例题4

计算定积分:

\[L = \int_{a}^{b} x^2 \sqrt{(x - a)(b - x)} \, \mathrm{d}x\]

解答
\(c = \frac{b - a}{2}\),作平移变换 \(x = t + \frac{a + b}{2}\),则积分限变为 \(t \in [-c, c]\),且

\[\sqrt{(x - a)(b - x)} = \sqrt{c^2 - t^2}.\]

于是

\[L = \int_{-c}^{c} \left( t + \frac{a + b}{2} \right)^2 \sqrt{c^2 - t^2} \, \mathrm{d}t.\]

展开后分为三项:

  1. \(\int_{-c}^{c} t^2 \sqrt{c^2 - t^2} \, \mathrm{d}t\):令 \(t = c \sin \theta\),则 \[\int_{-c}^{c} t^2 \sqrt{c^2 - t^2} \, \mathrm{d}t = 2c^4 \int_{0}^{\frac{\pi}{2}} \sin^2 \theta \cos^2 \theta \, \mathrm{d}\theta = \frac{\pi}{8} c^4.\]
  2. \(2 \cdot \frac{a + b}{2} \int_{-c}^{c} t \sqrt{c^2 - t^2} \, \mathrm{d}t = 0\)(奇函数在对称区间上积分为零)。
  3. \(\left( \frac{a + b}{2} \right)^2 \int_{-c}^{c} \sqrt{c^2 - t^2} \, \mathrm{d}t = \frac{(a + b)^2}{4} \cdot \frac{\pi c^2}{2}\)(半圆面积)。

代入 \(c = \frac{b - a}{2}\),整理得

\[L = \frac{\pi}{32} (b - a)^2 \left[ \frac{(b - a)^2}{4} + (a + b)^2 \right].\]
Last updated on