二、多元函数的偏导数与全微分
(一)偏导数的概念与计算
1. 偏导数的定义
【定义8.4】 设有二元函数 \(z = f(x,y)\),若存在
\[\frac {\mathrm {d}}{\mathrm {d} x} f (x, y _ {0}) \mid_ {x = x _ {0}} \left(\frac {\mathrm {d}}{\mathrm {d} y} f (x _ {0}, y) \mid_ {y = y _ {0}}\right),\]称它为 \(z = f(x,y)\) 在点 \((x_0,y_0)\) 处对 \(x\)(对 \(y\))的偏导数,记为 \(\frac{\partial f(x_0,y_0)}{\partial x},\frac{\partial z}{\partial x}\bigg|_{(x_0,y_0)},\frac{\partial f}{\partial x}\bigg|_{(x_0,y_0)},z_x'\mid_{(x_0,y_0)}\) 或 \(f^{\prime}(x_0,y_0)\left(\frac{\partial f(x_0,y_0)}{\partial y},\frac{\partial z}{\partial y}\bigg|_{(x_0,y_0)},\frac{\partial f}{\partial y}\bigg|_{(x_0,y_0)},z_y'\mid_{(x_0,y_0)}\right)\)。
按定义有
\[\frac {\partial f \left(x _ {0} , y _ {0}\right)}{\partial x} = \lim _ {\Delta x \rightarrow 0} \frac {f \left(x _ {0} + \Delta x , y _ {0}\right) - f \left(x _ {0} , y _ {0}\right)}{\Delta x}, \quad \frac {\partial f \left(x _ {0} , y _ {0}\right)}{\partial y} = \lim _ {\Delta y \rightarrow 0} \frac {f \left(x _ {0} , y _ {0} + \Delta y\right) - f \left(x _ {0} , y _ {0}\right)}{\Delta y}.\]若 \(z = f(x,y)\) 在区域 \(D\) 的每一点 \((x,y)\) 处都有偏导数,一般地说,它们仍是 \(x,y\) 的函数,称为 \(f(x,y)\) 的偏导函数,简称偏导数,记为 \(\frac{\partial z}{\partial x},\frac{\partial f}{\partial x},f_x'(x,y);\frac{\partial z}{\partial y},\frac{\partial f}{\partial y},f_y'(x,y)\)。
【注】
① 由以上定义可以看出偏导数本质上是一元函数的导数。
② 至于实际求 \(z = f(x, y)\) 的偏导数,如求 \(\frac{\partial f}{\partial x}\) 时,只要把 \(y\) 暂时看做常量而对 \(x\) 求导数;求 \(\frac{\partial f}{\partial y}\) 时,则只要把 \(x\) 暂时看作常量而对 \(y\) 求导数。因此,如果求函数在一确定点处的偏导数时,这些被视为常数的变量可用具体数值代入,从而使计算简化。但若要求混合偏导数 \(\frac{\partial^2 f}{\partial x \partial y}\),就必须注意:若求 \(\left. \frac{\partial^2 f}{\partial x \partial y} \right|_{(x_0, y_0)}\),要先求 \(\frac{\partial f(x, y)}{\partial x}\),然后再代入 \(x = x_0\) 后在 \(y = y_0\) 对 \(y\) 求导数,
\[\left. \frac {\partial^ {2} f}{\partial x \partial y} \right| _ {(x _ {0}, y _ {0})} = \left. \frac {\mathrm {d}}{\mathrm {d} y} \left(\frac {\partial f (x , y)}{\partial x} \right| _ {x = x _ {0}}\right) \Bigg | _ {y = y _ {0}}.\]2. 偏导数的几何意义
\(\frac{\partial f(x_0, y_0)}{\partial x}\) 即曲面 \(z = f(x, y)\) 与平面 \(y = y_0\) 的交线在点 \(M_0(x_0, y_0, f(x_0, y_0))\) 处的切线对 \(x\) 轴的斜率;\(\frac{\partial f(x_0, y_0)}{\partial y}\) 即曲面 \(z = f(x, y)\) 与平面 \(x = x_0\) 的交线在点 \(M_0\) 处的切线对 \(y\) 轴的斜率。
3. 偏导数的计算
(1)求偏导数,归结为求一元函数的导数。
(2)求 \(f(x, y) = \begin{cases} g(x, y), & (x, y) \neq (x_0, y_0), \\ A, & (x, y) = (x_0, y_0) \end{cases}\) 在 \((x_0, y_0)\) 处的偏导数的方法:
方法 \(1^{\circ}\) 按定义:
\[\frac {\partial f \left(x _ {0} , y _ {0}\right)}{\partial x} = \lim _ {\Delta x \rightarrow 0} \frac {f \left(x _ {0} + \Delta x , y _ {0}\right) - f \left(x _ {0} , y _ {0}\right)}{\Delta x} = \lim _ {\Delta x \rightarrow 0} \frac {g \left(x _ {0} + \Delta x , y _ {0}\right) - A}{\Delta x};\]类似地求 \(\frac{\partial f(x_0,y_0)}{\partial y}\)。
方法 \(2^{\circ}\) 在连续的条件下求偏导数的极限:
当 \(x \in U_0(x_0, \delta)\) 时,\(f(x, y)\) 在 \((x, y_0)\) 存在偏导数 \(\frac{\partial f(x, y_0)}{\partial x}\),\(f(x, y_0)\) 对 \(x\) 在点 \(x = x_0\) 处连续。若 \(\lim_{x \to x_0} \frac{\partial f(x, y_0)}{\partial x} = B\),则 \(\frac{\partial f(x_0, y_0)}{\partial x} = B\)。对 \(\frac{\partial f(x_0, y_0)}{\partial y}\) 有类似结论。
【例8.3】
(Ⅰ)设 \(f(x,y) = x^{2} + (y - 1)\arcsin \sqrt{\frac{y}{x}}\),求 \(\frac{\partial f}{\partial x}\Big|_{(2,1)}\) 与 \(\frac{\partial f}{\partial y}\Big|_{(2,1)}\)。
(Ⅱ)设 \(f(x,y) = \left\{ \begin{array}{ll}(x^2 +y^2)\ln (x^2 +y^2),(x,y)\neq (0,0),\\ 0,(x,y) = (0,0), \end{array} \right.\),求 \(\frac{\partial f(0,0)}{\partial x}\) 与 \(\frac{\partial f(0,0)}{\partial y}\)。
【解】
(Ⅰ)因 \(f(x,1) = x^2\),故 \(\left.\frac{\partial f}{\partial x}\right|_{(2,1)} = \left.\frac{\mathrm{d}}{\mathrm{d}x} f(x,1)\right|_{x=2} = \left.\frac{\mathrm{d}(x^2)}{\mathrm{d}x}\right|_{x=2} = 2x\bigg|_{x=2} = 4\)。
又因 \(f(2,y) = 4 + (y - 1)\arcsin \sqrt{\frac{y}{2}}\),故
\[\begin{aligned} \left. \frac {\partial f}{\partial y} \right| _ {(2, 1)} &= \frac {d}{d y} f (2, y) | _ {y = 1} = \frac {d}{d y} \left[ 4 + (y - 1) \arcsin \sqrt {\frac {y}{2}} \right] | _ {y = 1} \\ &= \left[ \arcsin \sqrt {\frac {y}{2}} + (y - 1) \left(\arcsin \sqrt {\frac {y}{2}}\right) ^ {\prime} \right] _ {y = 1} = \frac {\pi}{4}. \end{aligned}\]评注 也可直接用定义计算 \(\frac{\partial f}{\partial y}\bigg|_{(2,1)}\)。因 \(f(2,y) = 4 + (y - 1)\arcsin \sqrt{\frac{y}{2}},f(2,1) = 4\),故
\[\begin{aligned} \left. \frac {\partial f}{\partial y} \right| _ {(2, 1)} &= \lim _ {y \rightarrow 1} \frac {f (2 , y) - f (2 , 1)}{y - 1} = \lim _ {y \rightarrow 1} \frac {4 + (y - 1) \arcsin \sqrt {\frac {y}{2}} - 4}{y - 1} \\ &= \lim _ {y \rightarrow 1} \arcsin \sqrt {\frac {y}{2}} = \arcsin \sqrt {\frac {1}{2}} = \frac {\pi}{4}. \end{aligned}\](Ⅱ)按定义
\[\frac {\partial f (0 , 0)}{\partial x} = \lim _ {\Delta x \rightarrow 0} \frac {f (0 + \Delta x , 0) - f (0 , 0)}{\Delta x} = \lim _ {\Delta x \rightarrow 0} \frac {\Delta x ^ {2} \ln (\Delta x ^ {2})}{\Delta x} = \lim _ {\Delta x \rightarrow 0} [ \Delta x \ln (\Delta x ^ {2}) ] = 0.\]类似可求 \(\frac{\partial f(0,0)}{\partial y} = 0\)(或由 \(x,y\) 的对称性得)。
(二)可微性与全微分
1. 可微性与全微分的定义
【定义8.5】 设二元函数 \(z = f(x,y)\) 在点 \((x_0,y_0)\) 的某邻域内有定义,如果该函数在点 \(M_0(x_0,y_0)\) 处的全增量 \(\Delta z = f(x_0 + \Delta x,y_0 + \Delta y) - f(x_0,y_0)\) 可表示为
\[\Delta z = A \Delta x + B \Delta y + o (\rho) (\rho \rightarrow 0),\]其中 \(A, B\) 不依赖于 \(\Delta x, \Delta y\),而仅与 \(x_0, y_0\) 有关,\(\rho = \sqrt{\Delta x^2 + \Delta y^2}\),则称函数 \(z = f(x, y)\) 在点 \(M_0(x_0, y_0)\) 可微,而 \(A \Delta x + B \Delta y\) 称为 \(z = f(x, y)\) 在点 \(M_0(x_0, y_0)\) 的全微分,记作 \(\mathrm{d}z|_{(x_0, y_0)}\),\(\mathrm{d}f|_{(x_0, y_0)}\),即
\[\mathrm {d} z \big | _ {\left(x _ {0}, y _ {0}\right)} = A \Delta x + B \Delta y.\]2. 函数 \(z = f(x, y)\) 在点 \((x_0, y_0)\) 可微分的必要与充分条件
【定理8.4】(可微的必要条件)若 \(f(x,y)\) 在点 \((x_0,y_0)\) 处可微,则 \(z = f(x,y)\) 在点 \((x_0,y_0)\) 处连续,两个偏导数 \(f_{x}^{\prime}(x_{0},y_{0}),f_{y}^{\prime}(x_{0},y_{0})\) 都存在,且 \(A = f_x'(x_0,y_0),B = f_y'(x_0,y_0)\),即有
\[\left. \mathrm {d} z \right| _ {\left(x _ {0}, y _ {0}\right)} = f _ {x} ^ {\prime} \left(x _ {0}, y _ {0}\right) \mathrm {d} x + f _ {y} ^ {\prime} \left(x _ {0}, y _ {0}\right) \mathrm {d} y, \tag {8.1}\]其中规定自变量 \(x\) 与 \(y\) 的微分 \(\mathrm{d}x = \Delta x\),\(\mathrm{dy} = \Delta y\)。
【定理8.5】(可微的充分条件)若 \(z = f(x,y)\) 在点 \((x_0,y_0)\) 的某邻域内存在偏导数 \(f_{x}^{\prime}(x,y)\),\(f_{y}^{\prime}(x,y)\),且 \(f_{x}^{\prime}(x,y)\) 与 \(f_{y}^{\prime}(x,y)\) 作为二元函数在点 \((x_0,y_0)\) 处连续,则 \(z = f(x,y)\) 在点 \((x_0,y_0)\) 可微。
(三)偏导数的连续性、函数可微性、可偏导性与函数连续性之间的关系
若 \(z = f(x,y)\) 在 \((x_0,y_0)\) 处存在 \(f_{x}^{\prime}(x_{0},y_{0})\) 与 \(f_{y}^{\prime}(x_{0},y_{0})\),则称 \(z = f(x,y)\) 在 \((x_0,y_0)\) 可偏导。
二元函数的两个偏导数连续,二元函数可微、可偏导与二元函数连续之间的关系如下:

\(f_{x}^{\prime}(x,y),f_{y}^{\prime}(x,y)\) 在点 \((x_0,y_0)\) 连续
\(\Downarrow\)
\(z = f(x,y)\) 在点 \((x_0,y_0)\) 可微且 \(\mathrm{dz} = A\mathrm{dx} + B\mathrm{dy}\)
\(\Downarrow\)
\(f(x,y)\) 在点 \((x_0,y_0)\) 连续
\(\Downarrow\)
\(z = f(x,y)\) 在点 \((x_0,y_0)\) 可偏导,且 \(f_{x}^{\prime}(x_0,y_0) = A,f_{y}^{\prime}(x_0,y_0) = B\)
【例8.4】 设 \(f(x,y) = \left\{ \begin{array}{ll} \frac{x^3y}{x^6 + y^2}, & (x,y)\neq (0,0),\\ 0, & (x,y) = (0,0), \end{array} \right.\),则 \(f(x,y)\) 在点(0,0)处
(A)连续,偏导数存在。
(B)连续,偏导数不存在。
(C) 不连续,偏导数存在。
(D) 不连续,偏导数不存在。
【分析】 这是讨论 \(f(x,y)\) 在点(0,0)处是否连续,是否可偏导。先讨论 \(f(x,y)\) 在点(0,0)处是否可偏导。由于 \(f(x,0) = 0\)(\(\forall x\in (-\infty , + \infty))\),则 \(\left.\frac{\partial f}{\partial x}\right|_{(0,0)} = 0\)。同理,\(\left.\frac{\partial f}{\partial y}\right|_{(0,0)} = 0\)。因此(B),(D)被排除。
再考察 \(f(x,y)\) 在点(0,0)处的连续性。令 \(y = x^3\),则 \(\lim_{\substack{y = x^3\\ x\to 0}}f(x,y) = \lim_{x\to 0}\frac{x^3\cdot x^3}{x^6 + (x^3)^2} = \frac{1}{2}\neq f(0,0)\)。因此 \(f(x,y)\) 在点(0,0)处不连续。故应选(C)。
评注 本题中的函数 \(f(x, y)\) 在点(0,0)处不连续,但两个偏导数都存在且 \(f_x'(0,0) = f_y'(0,0) = 0\);而函数 \(f(x, y) = |x| + |y|\) 则是在点(0,0)处连续,但两个偏导数 \(f_x'(0,0)\) 和 \(f_y'(0,0)\) 都不存在。这两个例子表明对多元函数而言,函数的连续性与其偏导数存在这二者互为既不充分又不必要的条件。
(四)高阶偏导数、混合偏导数与求导次序无关问题
若函数 \(z = f(x, y)\) 的一阶偏导(函)数 \(\frac{\partial z}{\partial x} = f_x'\),\(\frac{\partial z}{\partial y} = f_y'\) 关于 \(x\) 和 \(y\) 的偏导数仍然存在,则称一阶偏导数的偏导数是 \(z = f(x, y)\) 的二阶偏导数。
按对自变量求导次序的不同,二元函数 \(z = f(x,y)\) 有下列四个二阶偏导数:
\[\frac {\partial^ {2} z}{\partial x ^ {2}} = \frac {\partial}{\partial x} \left(\frac {\partial z}{\partial x}\right) = f _ {x x} ^ {\prime \prime} (x, y),\] \[\frac {\partial^ {2} z}{\partial x \partial y} = \frac {\partial}{\partial y} \left(\frac {\partial z}{\partial x}\right --- # 练习题 ### 例题1 设函数 $ f(x, y) = x^2 y + \sin(xy) $,求 $ \frac{\partial f}{\partial x} $ 和 $ \frac{\partial f}{\partial y} $ 在点 $ (1, 0) $ 处的值。 **解答** 首先计算偏导函数:\]\frac{\partial f}{\partial x} = 2xy + y\cos(xy), \quad \frac{\partial f}{\partial y} = x^2 + x\cos(xy).
\[代入点 $ (1, 0) $:\]\left.\frac{\partial f}{\partial x}\right|{(1,0)} = 2(1)(0) + 0\cdot\cos(0) = 0, \quad \left.\frac{\partial f}{\partial y}\right|{(1,0)} = 1^2 + 1\cdot\cos(0) = 1 + 1 = 2.
\[因此,$ \frac{\partial f}{\partial x}\big|_{(1,0)} = 0 $,$ \frac{\partial f}{\partial y}\big|_{(1,0)} = 2 $. --- ### 例题2 设函数 $ f(x, y) = \begin{cases} \frac{xy}{x^2 + y^2}, & (x, y) \neq (0, 0), \\ 0, & (x, y) = (0, 0). \end{cases} $ (1) 求 $ \frac{\partial f}{\partial x}\big|_{(0,0)} $ 和 $ \frac{\partial f}{\partial y}\big|_{(0,0)} $。 (2) 讨论 $ f(x, y) $ 在点 $ (0, 0) $ 处的连续性。 **解答** (1) 按偏导数定义:\]\frac{\partial f(0,0)}{\partial x} = \lim_{\Delta x \to 0} \frac{f(\Delta x, 0) - f(0,0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{0 - 0}{\Delta x} = 0.
\[类似地,\]\frac{\partial f(0,0)}{\partial y} = \lim_{\Delta y \to 0} \frac{f(0, \Delta y) - f(0,0)}{\Delta y} = \lim_{\Delta y \to 0} \frac{0 - 0}{\Delta y} = 0.
\[因此,$ \frac{\partial f}{\partial x}\big|_{(0,0)} = \frac{\partial f}{\partial y}\big|_{(0,0)} = 0 $。 (2) 考虑路径 $ y = x $:\]\lim_{x \to 0} f(x, x) = \lim_{x \to 0} \frac{x^2}{x^2 + x^2} = \frac{1}{2} \neq f(0,0) = 0.
\[因此,$ f(x, y) $ 在点 $ (0, 0) $ 处不连续。 --- ### 例题3 设函数 $ z = f(x, y) = x^3 + 3xy^2 $,验证 $ f(x, y) $ 在点 $ (1, 1) $ 处可微,并求全微分 $ \mathrm{d}z\big|_{(1,1)} $。 **解答** 首先计算偏导数:\]\frac{\partial f}{\partial x} = 3x^2 + 3y^2, \quad \frac{\partial f}{\partial y} = 6xy.
\[在点 $ (1, 1) $ 处:\]\left.\frac{\partial f}{\partial x}\right|{(1,1)} = 3(1)^2 + 3(1)^2 = 6, \quad \left.\frac{\partial f}{\partial y}\right|{(1,1)} = 6(1)(1) = 6.
\[由于偏导数在点 $ (1, 1) $ 处连续,函数在该点可微。全微分为:\]\mathrm{d}z\big|{(1,1)} = \frac{\partial f}{\partial x}\big|{(1,1)} \mathrm{d}x + \frac{\partial f}{\partial y}\big|_{(1,1)} \mathrm{d}y = 6,\mathrm{d}x + 6,\mathrm{d}y.
\[ --- ### 例题4 设函数 $ z = \ln(x^2 + y^2) $,求二阶偏导数 $ \frac{\partial^2 z}{\partial x^2} $、$ \frac{\partial^2 z}{\partial y^2} $ 和混合偏导数 $ \frac{\partial^2 z}{\partial x \partial y} $,并验证 $ \frac{\partial^2 z}{\partial x \partial y} = \frac{\partial^2 z}{\partial y \partial x} $。 **解答** 一阶偏导数:\]\frac{\partial z}{\partial x} = \frac{2x}{x^2 + y^2}, \quad \frac{\partial z}{\partial y} = \frac{2y}{x^2 + y^2}.
\[二阶偏导数:\]\frac{\partial^2 z}{\partial x^2} = \frac{\partial}{\partial x} \left( \frac{2x}{x^2 + y^2} \right) = \frac{2(x^2 + y^2) - 2x(2x)}{(x^2 + y^2)^2} = \frac{2y^2 - 2x^2}{(x^2 + y^2)^2},
\[\]\frac{\partial^2 z}{\partial y^2} = \frac{\partial}{\partial y} \left( \frac{2y}{x^2 + y^2} \right) = \frac{2(x^2 + y^2) - 2y(2y)}{(x^2 + y^2)^2} = \frac{2x^2 - 2y^2}{(x^2 + y^2)^2},
\[\]\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial y} \left( \frac{2x}{x^2 + y^2} \right) = \frac{-2x(2y)}{(x^2 + y^2)^2} = \frac{-4xy}{(x^2 + y^2)^2},
\[\]\frac{\partial^2 z}{\partial y \partial x} = \frac{\partial}{\partial x} \left( \frac{2y}{x^2 + y^2} \right) = \frac{-2y(2x)}{(x^2 + y^2)^2} = \frac{-4xy}{(x^2 + y^2)^2}.
\[显然,$ \frac{\partial^2 z}{\partial x \partial y} = \frac{\partial^2 z}{\partial y \partial x} $,符合定理8.6。 --- ### 例题5 设函数 $ f(x, y) $ 在区域 $ D $ 上满足 $ \frac{\partial f}{\partial x} = 0 $ 和 $ \frac{\partial f}{\partial y} = 0 $。证明:$ f(x, y) $ 在 $ D $ 上为常数。 **解答** 由条件,对任意 $ (x, y) \in D $,有 $ \frac{\partial f}{\partial x} = 0 $ 和 $ \frac{\partial f}{\partial y} = 0 $。根据全微分定义:\]\mathrm{d}f = \frac{\partial f}{\partial x} \mathrm{d}x + \frac{\partial f}{\partial y} \mathrm{d}y = 0.
\[这意味着 $ f(x, y) $ 在 $ D $ 上任意点的增量为零,故 $ f(x, y) $ 在 $ D $ 上为常数。\]