Skip to Content
👋 欢迎来到考研学堂! 了解详情

1. 高阶导数的定义

y=f(x)y = f(x) 的导数 y=f(x)y' = f'(x) 仍是 xx 的可导函数,
则称 y=f(x)y' = f'(x) 的导数为函数 y=f(x)y = f(x) 的二阶导数,记作:yy''f(x)f''(x)d2ydx2\dfrac{d^2 y}{dx^2}d2fdx2\dfrac{d^2 f}{dx^2}

二阶导数的导数,叫做三阶导数,记作:yy'''f(x)f'''(x)d3ydx3\dfrac{d^3 y}{dx^3}d3fdx3\dfrac{d^3 f}{dx^3}

三阶导数的导数,叫做四阶导数,记作:y(4)y^{(4)}f(4)(x)f^{(4)}(x)d4ydx4\dfrac{d^4 y}{dx^4}d4fdx4\dfrac{d^4 f}{dx^4}

……

(n1)(n-1) 阶导数的导数,叫做 nn 阶导数,记作:y(n)y^{(n)}f(n)(x)f^{(n)}(x)dnydxn\dfrac{d^n y}{dx^n}dnfdxn\dfrac{d^n f}{dx^n}

【注】
函数 y=f(x)y = f(x) nn 阶可导,是指 y=f(x)y = f(x) 有一阶、二阶、⋯⋯、直到 nn 阶的导数。


2. 高阶导数的计算

(1) 直接法:
先求出 yy'yy'' 等,找出导数规律,写出 y(n)y^{(n)} 的结果。

(2) 间接法:
利用已知高阶导数公式、运算法则,通过将函数恒等变形、变量替换等求出高阶导数结果。


3. 高阶导数的四则运算法则

u(x),v(x)u(x), v(x)nn 阶可导,则

[u(x)±v(x)](n)=u(n)(x)±v(n)(x);[u(x) \pm v(x)]^{(n)} = u^{(n)}(x) \pm v^{(n)}(x); [Cu(x)](n)=Cu(n)(x)(C 为常数);[Cu(x)]^{(n)} = C \cdot u^{(n)}(x) \quad (C \text{ 为常数}); [u(x)v(x)](n)=i=0nCniu(ni)(x)v(i)(x)[u(x)v(x)]^{(n)} = \sum_{i=0}^{n} C_{n}^{i} u^{(n-i)}(x) \cdot v^{(i)}(x) =u(n)(x)v(x)+Cn1u(n1)(x)v(x)++Cnku(nk)(x)v(k)(x)= u^{(n)}(x)v(x) + C_{n}^{1} u^{(n-1)}(x)v'(x) + \cdots + C_{n}^{k} u^{(n-k)}(x)v^{(k)}(x) ++u(x)v(n)(x).+ \cdots + u(x)v^{(n)}(x).

——莱布尼茨公式

其中 u(0)(x)=u(x),v(0)(x)=v(x)u^{(0)}(x) = u(x), v^{(0)}(x) = v(x).

4. 常用的高阶导数公式

(xn)(n)=n!,(ex)(n)=ex,(ax)(n)=axlnna,(x^n)^{(n)} = n!, \, (e^x)^{(n)} = e^x, \, (a^x)^{(n)} = a^x \ln^n a, (sinx)(n)=sin(x+nπ2),(cosx)(n)=cos(x+nπ2),(\sin x)^{(n)} = \sin \left( x + \frac{n\pi}{2} \right), \, (\cos x)^{(n)} = \cos \left( x + \frac{n\pi}{2} \right), (lnx)(n)=(1)n1(n1)!xn,(1ax+b)(n)=(1)nann!(ax+b)n+1,(\ln x)^{(n)} = (-1)^{n-1} \frac{(n-1)!}{x^n}, \, \left( \frac{1}{ax + b} \right)^{(n)} = (-1)^n \frac{a^n \cdot n!}{(ax + b)^{n+1}}, (sinkx)(n)=knsin(kx+nπ2),(coskx)(n)=kncos(kx+nπ2).(\sin kx)^{(n)} = k^n \sin \left( kx + \frac{n\pi}{2} \right), \, (\cos kx)^{(n)} = k^n \cos \left( kx + \frac{n\pi}{2} \right).

例 31y=ln1x1+x2y = \ln \sqrt{\frac{1-x}{1+x^2}},则 d2ydx2x=0=\left. \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} \right|_{x=0} = ______.

【解】

y=ln1x1+x2=12[ln(1x)ln(1+x2)],y = \ln \sqrt{\frac{1-x}{1+x^2}} = \frac{1}{2} [\ln(1-x) - \ln(1+x^2)], dydx=12(11x2x1+x2),\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2} \left( \frac{-1}{1-x} - \frac{2x}{1+x^2} \right), d2ydx2=12[1(1x)22(1+x2)2x2x(1+x2)2]=12[1(1x)222x2(1+x2)2],\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{1}{2} \left[ \frac{-1}{(1-x)^2} - \frac{2(1+x^2) - 2x \cdot 2x}{(1+x^2)^2} \right] = \frac{1}{2} \left[ \frac{-1}{(1-x)^2} - \frac{2-2x^2}{(1+x^2)^2} \right],

d2ydx2x=0=12(12)=32\left. \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} \right|_{x=0} = \frac{1}{2} (-1-2) = -\frac{3}{2}.


例 32 (2017,数一)已知函数 f(x)=11+x2f(x) = \frac{1}{1+x^2},则 f(3)(0)=f^{(3)}(0) = ______.

【解】 方法一

f(x)=(1+x2)1, 则 f(x)=(1+x2)22x=2x(1+x2)2,f(x) = (1+x^2)^{-1}, \text{ 则 } f'(x) = -(1+x^2)^{-2} \cdot 2x = -2x(1+x^2)^{-2}, f(x)=2(1+x2)22x(2)(1+x2)32x=2(1+x2)2+8x2(1+x2)3,f''(x) = -2(1+x^2)^{-2} - 2x(-2)(1+x^2)^{-3} \cdot 2x = -2(1+x^2)^{-2} + 8x^2(1+x^2)^{-3}, f(3)(x)=4(1+x2)32x+16x(1+x2)3+8x2(3)(1+x2)42xf^{(3)}(x) = 4(1+x^2)^{-3} \cdot 2x + 16x(1+x^2)^{-3} + 8x^2 \cdot (-3)(1+x^2)^{-4} \cdot 2x =24x(1+x2)348x3(1+x2)4,= 24x(1+x^2)^{-3} - 48x^3(1+x^2)^{-4},

f(3)(0)=0f^{(3)}(0) = 0.

方法二f(x)=11+x2f(x) = \frac{1}{1+x^2} 是偶函数知,f(x)f'(x) 是奇函数,f(x)f''(x) 是偶函数,f(3)(x)f^{(3)}(x) 是奇函数,则 f(3)(x)=f(3)(x)f^{(3)}(-x) = -f^{(3)}(x),所以,f(3)(0)=0f^{(3)}(0) = 0.

【评注】 还可利用 f(x)f(x) 的麦克劳林展开式求 f(3)(0)f^{(3)}(0).


例 33 (2006, 数三) f(x)f(x)x=2x=2 某邻域内可导, 且 f(x)=ef(x),f(2)=1f'(x) = e^{f(x)}, f(2) = 1, 则 f(2)=f'''(2) = _______.

【解】f(x)=ef(x)f'(x) = e^{f(x)}, 则

f(x)=[ef(x)]=ef(x)f(x)=ef(x)ef(x)=e2f(x),f''(x) = \left[e^{f(x)}\right]' = e^{f(x)} \cdot f'(x) = e^{f(x)} \cdot e^{f(x)} = e^{2f(x)}, f(x)=[e2f(x)]=e2f(x)2f(x)=e2f(x)2ef(x)=2e3f(x),f'''(x) = \left[e^{2f(x)}\right]' = e^{2f(x)} \cdot 2f'(x) = e^{2f(x)} \cdot 2e^{f(x)} = 2e^{3f(x)},

f(2)=2e3f(2)=2e3f'''(2) = 2e^{3f(2)} = 2e^3.

例 34 已知 y=xlnxy = x \ln x, 则 y(10)=y^{(10)} =

(A) 1x9-\frac{1}{x^9}. \qquad

(B) 1x9\frac{1}{x^9}. \qquad

(C) 8!x9\frac{8!}{x^9}. \qquad

(D) 8!x9-\frac{8!}{x^9}.

【解】 y=lnx+x1x=lnx+1,y=1x,y=1x2,y(4)=(1)(2)x3,y' = \ln x + x \cdot \frac{1}{x} = \ln x + 1, y'' = \frac{1}{x}, y''' = \frac{-1}{x^2}, y^{(4)} = \frac{(-1)(-2)}{x^3}, \ldots, 则 y(10)=(1)(2)(8)x9=8!x9y^{(10)} = \frac{(-1)(-2)\cdots(-8)}{x^9} = \frac{8!}{x^9}. 故应选 (C).

【评注】 可利用莱布尼茨公式求 y(10)y^{(10)}.

例 35 (2010, 数二) 函数 y=ln(12x)y = \ln(1-2x)x=0x=0 处的 nn 阶导数 y(n)(0)=y^{(n)}(0) = _______.

【解】 y=212x=2(12x)1y' = \frac{-2}{1-2x} = -2(1-2x)^{-1},

y=2(1)(12x)2(2)=(1)(2)2(12x)2,y'' = -2 \cdot (-1)(1-2x)^{-2} \cdot (-2) = (-1)(-2)^2(1-2x)^{-2}, y=(1)(2)2(2)(12x)3(2)=(1)(2)3(12x)3,y''' = (-1)(-2)^2(-2)(1-2x)^{-3} \cdot (-2) = (-1)(-2)^3(1-2x)^{-3}, y(4)=(1)(2)3(3)(12x)4(2)=(1)(2)4(3)(12x)4,y^{(4)}= (-1)(-2)^3(-3)(1-2x)^{-4} \cdot (-2) = (-1)(-2)^4(-3)(1-2x)^{-4},

y(n)=(1)(2)((n1))(2)n(12x)n=(n1)!2n(12x)ny^{(n)} = (-1)(-2)\cdots(-(n-1))(-2)^n(1-2x)^{-n} = -(n-1)!2^n(1-2x)^{-n}, 于是有 y(n)(0)=(n1)!2ny^{(n)}(0) = -(n-1)!2^n.

【评注】 记住结论 [ln(ax+b)](n)=(1)n1(n1)!an(ax+b)n[ \ln(ax+b) ]^{(n)} = (-1)^{n-1} \cdot \frac{(n-1)!a^n}{(ax+b)^n}, 可直接导出结果.


例 36 (2015, 数二) 函数 f(x)=x22xf(x) = x^22^xx=0x=0 处的 nn 阶导数 f(n)(0)=f^{(n)}(0) = _______.

【解】 由莱布尼茨公式得 (注意到 (x2)(i)=0(i=3,4,)(x^2)^{(i)} = 0 (i=3, 4, \cdots), (2x)(k)=2x(ln2)k(2^x)^{(k)} = 2^x(\ln 2)^k)

f(n)(x)=i=0n(ni)(x2)(i)(2x)(ni)f^{(n)}(x) = \sum_{i=0}^n \binom{n}{i}(x^2)^{(i)}(2^x)^{(n-i)} =x2(2x)(n)+n(x2)(2x)(n1)+n(n1)2(x2)(2)(2x)(n2)= x^2 \cdot (2^x)^{(n)} + n(x^2)' \cdot (2^x)^{(n-1)} + \frac{n(n-1)}{2}(x^2)^{(2)}(2^x)^{(n-2)} =x22x(ln2)n+2nx2x(ln2)n1+n(n1)2x(ln2)n2.= x^2 \cdot 2^x(\ln 2)^n + 2nx \cdot 2^x \cdot (\ln 2)^{n-1} + n(n-1)2^x(\ln 2)^{n-2}.

f(n)(0)=n(n1)(ln2)n2f^{(n)}(0) = n(n-1)(\ln 2)^{n-2}.


例 37y=x2exy = x^2e^x, 求 y(n)y^{(n)}.

【解】 由莱布尼茨公式及 (x2)(k)=0,k=3,4,,n(x^2)^{(k)} = 0, k=3, 4, \cdots, n

y(n)=x2(ex)(n)+(n1)(x2)(ex)(n1)+(n2)(x2)(2)(ex)(n2)y^{(n)} = x^2(e^x)^{(n)} + \binom{n}{1} (x^2)'(e^x)^{(n-1)} + \binom{n}{2} (x^2)^{(2)}(e^x)^{(n-2)} =x2ex+2nxex+n(n1)ex= x^2e^x + 2n xe^x + n(n-1)e^x =[x2+2nx+n(n1)]ex.= [x^2 + 2nx + n(n-1)]e^x.

例 38 求下列函数的 nn 阶导数.

(1) y=1x2+x2y = \frac{1}{x^2 + x - 2}.

(2) y=sin2xy = \sin^2 x.

【解】

(1) y=1x2+x2=13(1x11x+2)y = \frac{1}{x^2 + x - 2} = \frac{1}{3} \left( \frac{1}{x - 1} - \frac{1}{x + 2} \right), 由于 (1x+a)(n)=(1)nn!(x+a)n+1\left( \frac{1}{x + a} \right)^{(n)} = (-1)^n \frac{n!}{(x + a)^{n + 1}},

y(n)=13[(1x1)(n)(1x+2)(n)]y^{(n)} = \frac{1}{3} \left[ \left( \frac{1}{x - 1} \right)^{(n)} - \left( \frac{1}{x + 2} \right)^{(n)} \right]

=13[(1)nn!(x1)n+1(1)nn!(x+2)n+1]\quad = \frac{1}{3} \left[ (-1)^n \frac{n!}{(x - 1)^{n + 1}} - (-1)^n \frac{n!}{(x + 2)^{n + 1}} \right]

=(1)nn!3[1(x1)n+11(x+2)n+1]\quad = \frac{(-1)^n n!}{3} \left[ \frac{1}{(x - 1)^{n + 1}} - \frac{1}{(x + 2)^{n + 1}} \right].

(2) y=sin2x=1cos2x2=1212cos2xy = \sin^2 x = \frac{1 - \cos 2x}{2} = \frac{1}{2} - \frac{1}{2} \cos 2x, 由于 (coskx)(n)=kncos(kx+nπ2)(\cos kx)^{(n)} = k^n \cos \left( kx + \frac{n \pi}{2} \right),

y(n)=(12)(n)12(cos2x)(n)=122ncos(2x+nπ2)=2n1cos(2x+nπ2)y^{(n)} = \left( \frac{1}{2} \right)^{(n)} - \frac{1}{2} (\cos 2x)^{(n)} = -\frac{1}{2} \cdot 2^n \cos \left( 2x + \frac{n \pi}{2} \right) = -2^{n - 1} \cos \left( 2x + \frac{n \pi}{2} \right).


5. 几类函数的二阶导数求法

(1) 抽象复合函数 y=f[φ(x)]y = f[\varphi(x)] 的二阶导数 d2ydx2\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} 的求法

先求一阶导数 dydx=f[φ(x)]φ(x)\frac{\mathrm{d}y}{\mathrm{d}x} = f'[\varphi(x)] \varphi'(x),

再求二阶导数 d2ydx2=[f(φ(x))]φ(x)+f[φ(x)]φ(x)\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \left[ f'(\varphi(x)) \right]' \varphi'(x) + f'[\varphi(x)] \varphi''(x)

=f[φ(x)][φ(x)]2+f[φ(x)]φ(x)\quad\quad\quad\quad\quad\quad\quad = f''[\varphi(x)] [\varphi'(x)]^2 + f'[\varphi(x)] \varphi''(x).

【注】[f(φ(x))]\left[ f'(\varphi(x)) \right]' 仍是复合函数求导数,f(φ(x))f'(\varphi(x))f(u)f'(u)u=φ(x)u = \varphi(x) 的复合函数,因而应按照复合函数求导法则求 f(φ(x))f'(\varphi(x)) 的导数,即 [f(φ(x))]=f[φ(x)]φ(x)\left[ f'(\varphi(x)) \right]' = f''[\varphi(x)] \cdot \varphi'(x),如果漏掉 φ(x)\varphi'(x) 就会出错。注意 [f(φ(x))]f(φ(x))\left[ f'(\varphi(x)) \right]' \neq f''(\varphi(x)).


例 39f(x)f(x) 二阶可导,求下列函数的二阶导数 d2ydx2\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}.

(1) y=f(ex)y = f(\mathrm{e}^{-x}).

(2) y=lnf(x)y = \ln f(x).

【解】

(1) dydx=f(ex)(ex)=exf(ex)\frac{\mathrm{d}y}{\mathrm{d}x} = f'(\mathrm{e}^{-x}) \cdot (\mathrm{e}^{-x})' = -\mathrm{e}^{-x} f'(\mathrm{e}^{-x}),

d2ydx2=[(ex)f(ex)+ex(f(ex))]\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = -\left[ (\mathrm{e}^{-x})' f'(\mathrm{e}^{-x}) + \mathrm{e}^{-x} \cdot (f'(\mathrm{e}^{-x}))' \right]

=[exf(ex)+exf(ex)(ex)]\quad\quad\quad\quad\quad = -\left[ -\mathrm{e}^{-x} f'(\mathrm{e}^{-x}) + \mathrm{e}^{-x} f''(\mathrm{e}^{-x}) \cdot (\mathrm{e}^{-x})' \right]

=exf(ex)+e2xf(ex)\quad\quad\quad\quad\quad = \mathrm{e}^{-x} f'(\mathrm{e}^{-x}) + \mathrm{e}^{-2x} f''(\mathrm{e}^{-x}).

(2) dydx=1f(x)f(x)=f(x)f(x)\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{f(x)} f'(x) = \frac{f'(x)}{f(x)},

d2ydx2=f(x)f(x)f(x)f(x)f2(x)=f(x)f(x)[f(x)]2f2(x)\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{f''(x) f(x) - f'(x) \cdot f'(x)}{f^2(x)} = \frac{f''(x) f(x) - [f'(x)]^2}{f^2(x)}.


例 40 (1993,数三)设 y=sin[f(x2)]y = \sin[f(x^2)],其中 ff 具有二阶导数,求 d2ydx2\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}.

【解】

dy dx=cos[f(x2)][f(x2)]=cos[f(x2)]f(x2)2x=2xf(x2)cos[f(x2)],\frac{\mathrm{d} y}{\mathrm{~d} x} = \cos[f(x^{2})] \cdot [f(x^{2})]' = \cos[f(x^{2})] \cdot f'(x^{2}) \cdot 2x = 2x f'(x^{2}) \cos[f(x^{2})], d2y dx2=2f(x2)cos[f(x2)]+2x[f(x2)]cos[f(x2)]+2xf(x2)[cosf(x2)]\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}} = 2 f'(x^{2}) \cos[f(x^{2})] + 2 x [f'(x^{2})]' \cos[f(x^{2})] + 2 x f'(x^{2}) [\cos f(x^{2})]' =2f(x2)cos[f(x2)]+4x2f(x2)cos[f(x2)]4x2[f(x2)]2sin[f(x2)].= 2 f'(x^{2}) \cos[f(x^{2})] + 4 x^{2} f''(x^{2}) \cos[f(x^{2})] - 4 x^{2} [f'(x^{2})]^{2} \sin[f(x^{2})].

(2) 由方程 F(x,y)=0F(x, y) = 0 所确定的隐函数 y=y(x)y = y(x) 的二阶导数 d2y dx2\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}} 的求法

先利用隐函数求导法求出一阶导数 dy dx\frac{\mathrm{d} y}{\mathrm{~d} x},然后再利用四则运算或复合函数求导法则对 dy dx\frac{\mathrm{d} y}{\mathrm{~d} x} 关于 xx 求导得到二阶导数 d2y dx2\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}.

【注】dy dx\frac{\mathrm{d} y}{\mathrm{~d} x} 关于 xx 求导时,要牢记 dy dx\frac{\mathrm{d} y}{\mathrm{~d} x} 的表示式中 yy 仍是 xx 的函数.


例 41 由方程 ey+xy=ee^{y} + x y = e 确定 yyxx 的函数,求 d2y dx2\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}.

【解】 方程 ey+xy=ee^{y} + x y = e 两边对 xx 求导,得

eydy dx+y+xdy dx=0, 解得 dy dx=yx+ey,e^{y} \cdot \frac{\mathrm{d} y}{\mathrm{~d} x} + y + x \frac{\mathrm{d} y}{\mathrm{~d} x} = 0, \text{ 解得 } \frac{\mathrm{d} y}{\mathrm{~d} x} = -\frac{y}{x + e^{y}},

d2y dx2=dy dx(x+ey)y(1+eydy dx)(x+ey)2\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}} = -\frac{\frac{\mathrm{d} y}{\mathrm{~d} x} \cdot (x + e^{y}) - y \cdot \left(1 + e^{y} \cdot \frac{\mathrm{d} y}{\mathrm{~d} x}\right)}{(x + e^{y})^{2}} =y(x+eyyey)(yx+ey)(x+ey)2= \frac{y - (x + e^{y} - y e^{y}) \left(-\frac{y}{x + e^{y}}\right)}{(x + e^{y})^{2}} =2xy+2yeyy2ey(x+ey)3.= \frac{2 x y + 2 y e^{y} - y^{2} e^{y}}{(x + e^{y})^{3}}.

例 42 (2009,数二)设 y=y(x)y = y(x) 是由方程 xy+ey=x+1x y + e^{y} = x + 1 确定的隐函数,则

d2y dx2x=0=\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}} \bigg|_{x=0} =

【解】x=0x = 0 代入方程 xy+ey=x+1x y + e^{y} = x + 1,解得 y=0y = 0

对方程 xy+ey=x+1x y + e^{y} = x + 1 两边关于 xx 求导得

y+xdy dx+eydy dx=1,y + x \frac{\mathrm{d} y}{\mathrm{~d} x} + e^{y} \frac{\mathrm{d} y}{\mathrm{~d} x} = 1,

x=0,y=0x = 0, y = 0 代入上式得

dy dxx=0=1.\left.\frac{\mathrm{d} y}{\mathrm{~d} x}\right|_{x=0} = 1.

对上式两边再关于 xx 求导得

dy dx+dy dx+xd2y dx2+ey(dy dx)2+eyd2y dx2=0,\frac{\mathrm{d} y}{\mathrm{~d} x} + \frac{\mathrm{d} y}{\mathrm{~d} x} + x \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}} + e^{y} \cdot \left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2} + e^{y} \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}} = 0,

x=0,y=0,dy dx=1x = 0, y = 0, \frac{\mathrm{d} y}{\mathrm{~d} x} = 1 代入上式得

d2y dx2x=0=3.\left.\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}\right|_{x=0} = -3.

故应填 3-3.

【评注】 因求一点的二阶导数值,所以可以不用求出 dy dx,d2y dx2\frac{\mathrm{d} y}{\mathrm{~d} x}, \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}} 的表示式,而直接在求导得出的关系等式中代入 x=0,y=0x = 0, y = 0 即可求出在 x=0x = 0 点的一阶、二阶导数值 dy dxx=0\left.\frac{\mathrm{d} y}{\mathrm{~d} x}\right|_{x=0},这就是利用隐函数求导的简便之处。

d2ydx2x=0\frac{d^{2} y}{d x^{2}} \bigg|_{x=0}, 这样可简化计算.


例 43 (2012, 数二)

y=y(x)y = y(x) 是由方程 x2y+1=eyx^2 - y + 1 = e^y 所确定的隐函数, 则 d2ydx2x=0=\frac{d^{2} y}{d x^{2}} \bigg|_{x=0} = ______.

【解】

x=0x = 0 代入方程 x2y+1=eyx^2 - y + 1 = e^y 中得 y=0y = 0,

方程 x2y+1=eyx^2 - y + 1 = e^y 两边对 xx 求导得

2xdydx=eydydx.2x - \frac{dy}{dx} = e^y \frac{dy}{dx}.

x=0,y=0x = 0, y = 0 代入上式得 dydxx=0=0\frac{dy}{dx} \bigg|_{x=0} = 0.

上式两边再对 xx 求导得

2d2ydx2=ey(dydx)2+eyd2ydx2.2 - \frac{d^2 y}{dx^2} = e^y \left(\frac{dy}{dx}\right)^2 + e^y \frac{d^2 y}{dx^2}.

x=0,y=0,dydx=0x = 0, y = 0, \frac{dy}{dx} = 0 代入上式得 d2ydx2x=0=1\frac{d^2 y}{dx^2} \bigg|_{x=0} = 1.

(3) 由参数方程 {x=φ(t),y=ψ(t)\begin{cases} x = \varphi(t), \\ y = \psi(t) \end{cases} 所确定的函数 y=y(x)y = y(x) 的二阶导数 d2ydx2\frac{d^2 y}{dx^2} 的求法(数学三不要求)

先求一阶导数 dydx=ψ(t)φ(t)\frac{dy}{dx} = \frac{\psi'(t)}{\varphi'(t)},

再求二阶导数 d2ydx2=φ(t)φ(t)φ(t)=ψ(t)φ(t)ψ(t)φ(t)[φ(t)]3\frac{d^2 y}{dx^2} = \frac{\frac{\varphi'(t)}{\varphi'(t)}}{\varphi'(t)} = \frac{\psi''(t) \varphi'(t) - \psi'(t) \varphi''(t)}{[\varphi'(t)]^3}.


例 44 (2013, 数一)

{x=sint,y=tsint+cost\begin{cases} x = \sin t, \\ y = t \sin t + \cos t \end{cases} (tt 为参数), 则 d2ydx2t=π4=\frac{d^2 y}{dx^2} \bigg|_{t=\frac{\pi}{4}} = ______.

【解】

由参数方程求导公式得

dydx=(tsint+cost)(sint)=tcostcost=t,\frac{dy}{dx} = \frac{(t \sin t + \cos t)'}{(\sin t)'} = \frac{t \cos t}{\cos t} = t, d2ydx2=t(sint)=1cost.\frac{d^2 y}{dx^2} = \frac{t'}{(\sin t)'} = \frac{1}{\cos t}.

d2ydx2t=π4=1cosπ4=2\frac{d^2 y}{dx^2} \bigg|_{t=\frac{\pi}{4}} = \frac{1}{\cos \frac{\pi}{4}} = \sqrt{2}. 故应填 2\sqrt{2}.


例 45

设函数 y=y(x)y = y(x) 由参数方程 {x=t+ln(t1),y=t3+t2+1\begin{cases} x = t + \ln(t-1), \\ y = t^3 + t^2 + 1 \end{cases} 所确定, 求 d2ydx2\frac{d^2 y}{dx^2}.

【解】

dydx=(t3+t2+1)[t+ln(t1)]=3t2+2t1+1t1=(3t+2)(t1)=3t2t2.\frac{dy}{dx} = \frac{(t^3 + t^2 + 1)'}{\big[t + \ln(t-1)\big]'} = \frac{3t^2 + 2t}{1 + \frac{1}{t-1}} = (3t + 2)(t-1) = 3t^2 - t - 2. d2ydx2=(3t2t2)[t+ln(t1)]=6t11+1t1=(6t1)(t1)t=6t27t+1t.\frac{d^2 y}{d x^2} = \frac{(3t^2 - t - 2)'}{\left[ t + \ln(t-1) \right]'} = \frac{6t - 1}{1 + \frac{1}{t-1}} = \frac{(6t-1)(t-1)}{t} = \frac{6t^2 - 7t + 1}{t}.
Last updated on