Skip to Content
👋 欢迎来到考研学堂! 了解详情

三、极限的计算

1. 利用四则运算法则求极限

四则运算法则limf(x)=a,limg(x)=b\lim f(x)=a, \lim g(x)=b, 则

(1) lim[f(x)±g(x)]=limf(x)±limg(x)=a±b\lim [f(x) \pm g(x)]=\lim f(x) \pm \lim g(x)=a \pm b.

(2) lim[f(x)g(x)]=limf(x)limg(x)=ab\lim [f(x) g(x)]=\lim f(x) \cdot \lim g(x)=a b.

(3) limf(x)g(x)=limf(x)limg(x)=ab\lim \frac{f(x)}{g(x)}=\frac{\lim f(x)}{\lim g(x)}=\frac{a}{b} (b0b \neq 0).

(1) 定理的条件不能忽略.

(2) 加、减、乘法则可推广至有限多个函数的情形.

推论
(1) limcf(x)=climf(x)=ca\lim c f(x)=c \lim f(x)=c acc 为常数).

(2) lim[f(x)]n=[limf(x)]n=an\lim [f(x)]^{n}=[\lim f(x)]^{n}=a^{n}, nn 是正整数.

(3) lim[f(x)]1n=[limf(x)]1n=a1n\lim [f(x)]^{\frac{1}{n}}=[\lim f(x)]^{\frac{1}{n}}=a^{\frac{1}{n}}nn 是正整数.

(1) 存在 ±\pm 不存在 == 不存在;

(2) 不存在 ±\pm 不存在 == 不一定;

(3) 存在 ×(÷)\times (\div) 不存在 == 不一定;

(4) 不存在 ×(÷)\times (\div) 不存在 == 不一定.

常用的结论:
(1) limf(x)=A0limf(x)g(x)=Alimg(x)\lim f(x)=A \neq 0 \Rightarrow \lim f(x) g(x)=A \lim g(x).
即: 极限非零的因子的极限可先求出来.

(2) limf(x)g(x)\lim \frac{f(x)}{g(x)} 存在,limg(x)=0limf(x)=0\lim g(x)=0 \Rightarrow \lim f(x)=0.

(3) limf(x)g(x)=A0,limf(x)=0limg(x)=0\lim \frac{f(x)}{g(x)}=A \neq 0, \lim f(x)=0 \Rightarrow \lim g(x)=0.

(4) 若 f(x)=a0xn+a1xn1++an(n1)f(x)=a_{0} x^{n}+a_{1} x^{n-1}+\cdots+a_{n}(n \geqslant 1), 则 limxx0f(x)=f(x0),limxf(x)=\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right), \lim _{x \rightarrow \infty} f(x)=\infty.

(5) 设有理分式函数 F(x)=P(x)Q(x),P(x),Q(x)F(x)=\frac{P(x)}{Q(x)}, P(x), Q(x) 是多项式,
Q(x0)0Q\left(x_{0}\right) \neq 0, 则 limxx0F(x)=P(x0)Q(x0)\lim _{x \rightarrow x_{0}} F(x)=\frac{P\left(x_{0}\right)}{Q\left(x_{0}\right)}.

(6) limxa0xm+a1xm1++amb0xn+b1xn1++bn={0,m<n,,m>n,a0b0,m=n.\lim _{x \rightarrow \infty} \frac{a_{0} x^{m}+a_{1} x^{m-1}+\cdots+a_{m}}{b_{0} x^{n}+b_{1} x^{n-1}+\cdots+b_{n}}=\begin{cases}0, & m<n, \\ \infty, & m>n, \\\frac{a_{0}}{b_{0}}, & m=n.\end{cases}

limx0ax1x=lna.\lim_{x \to 0} \frac{a^x - 1}{x} = \ln a.

limnnn=1,limnan=1(a>0).\lim_{n \to \infty} \sqrt[n]{n} = 1, \lim_{n \to \infty} \sqrt[n]{a} = 1 (a > 0).

limnenx={0,x<0,+,x>0,1,x=0.\lim_{n \to \infty} e^{nx} = \begin{cases} 0, & x < 0, \\ +\infty, & x > 0, \\ 1, & x = 0. \end{cases}


例 31 求极限 limx13x1+xx2+x2\lim_{x \to 1} \frac{\sqrt{3 - x} - \sqrt{1 + x}}{x^2 + x - 2}.

【解】 此极限为 00\frac{0}{0} 型,可对分子有理化,分母分解因式,得

limx13x1+xx2+x2=limx1(3x)2(1+x)2(x1)(x+2)(3x+1+x)\lim_{x \to 1} \frac{\sqrt{3 - x} - \sqrt{1 + x}}{x^2 + x - 2} = \lim_{x \to 1} \frac{(\sqrt{3 - x})^2 - (\sqrt{1 + x})^2}{(x - 1)(x + 2)(\sqrt{3 - x} + \sqrt{1 + x})} =limx12(x+2)(3x+1+x)=26.= \lim_{x \to 1} \frac{-2}{(x + 2)(\sqrt{3 - x} + \sqrt{1 + x})} = -\frac{\sqrt{2}}{6}.

例 32 求下列极限

  1. limx1(xx+1+21x2)\lim_{x \to -1} \left( \frac{x}{x + 1} + \frac{2}{1 - x^2} \right)

  2. limx+(x2+x+1x2x+1).\lim_{x \to +\infty} (\sqrt{x^2 + x + 1} - \sqrt{x^2 - x + 1}).

【解】

  1. 此极限为 +\infty + \infty 型,先通分,再求极限.
limx1(xx+1+21x2)=limx1x2x2x21=limx1(x2)(x+1)(x1)(x+1)=limx1x2x1=32.\lim_{x \to -1} \left( \frac{x}{x + 1} + \frac{2}{1 - x^2} \right) = \lim_{x \to -1} \frac{x^2 - x - 2}{x^2 - 1} = \lim_{x \to -1} \frac{(x - 2)(x + 1)}{(x - 1)(x + 1)} = \lim_{x \to -1} \frac{x - 2}{x - 1} = \frac{3}{2}.
  1. 此极限为 \infty - \infty 型,先有理化
limx+(x2+x+1x2x+1)=limx+2xx2+x+1+x2x+1(分子分母同除以 x),\lim_{x \to +\infty} (\sqrt{x^2 + x + 1} - \sqrt{x^2 - x + 1}) = \lim_{x \to +\infty} \frac{2x}{\sqrt{x^2 + x + 1} + \sqrt{x^2 - x + 1}} \quad \text{(分子分母同除以 $x$)}, =limx+21+1x+1x2+11x+1x2=1.= \lim_{x \to +\infty} \frac{2}{\sqrt{1 + \frac{1}{x} + \frac{1}{x^2}} + \sqrt{1 - \frac{1}{x} + \frac{1}{x^2}}} = 1.

【评注】 第(2)题,若极限过程改为 xx \to -\infty,极限又会如何?可练习之,答案为 limx(x2+x+1x2x+1)=1\lim_{x \to -\infty} (\sqrt{x^2 + x + 1} - \sqrt{x^2 - x + 1}) = -1.


例33 (1993,数三) limxx(x2+100+x)=___.\lim_{x \to -\infty} x (\sqrt{x^2 + 100} + x) = \_\_\_.

【解】 此极限为 0\infty \cdot 0 型,先对 x2+100+x\sqrt{x^2 + 100} + x 有理化,化为商,再求极限

limxx(x2+100+x)=limxx(x2+100+x)(x2+100x)x2+100x\lim_{x \to -\infty} x (\sqrt{x^2 + 100} + x) = \lim_{x \to -\infty} \frac{x (\sqrt{x^2 + 100} + x)(\sqrt{x^2 + 100} - x)}{\sqrt{x^2 + 100} - x} =limx100xx2+100x=limx100xx1+100x2x= \lim_{x \to -\infty} \frac{100x}{\sqrt{x^2 + 100} - x} = \lim_{x \to -\infty} \frac{100x}{-x \sqrt{1 + \frac{100}{x^2}} - x} =limx1001+100x21=50.= \lim_{x \to -\infty} \frac{100}{-\sqrt{1 + \frac{100}{x^2}} - 1} = -50.

xx \to -\infty,可知 x<0x < 0,对 x2+100\sqrt{x^2 + 100} 提取 x2x^2 开方时要注意 xx 的符号。


例 34 极限 limn[11×3+13×5++1(2n1)(2n+1)]=___\lim_{n \to \infty} \left[ \frac{1}{1 \times 3} + \frac{1}{3 \times 5} + \cdots + \frac{1}{(2n-1)(2n+1)} \right] = \_\_\_

【解】此为nn项和的极限,因项数nn变动,不能直接用加法法则求极限,要先对加项进行化简。由

1(2k1)(2k+1)=12(12k112k+1)\frac{1}{(2k-1)(2k+1)} = \frac{1}{2} \left( \frac{1}{2k-1} - \frac{1}{2k+1} \right)

原式 =limn12(113+1315++12n112n+1)=limn12(112n+1)=12.= \lim_{n \to \infty} \frac{1}{2} \left( 1 - \frac{1}{3} + \frac{1}{3} - \frac{1}{5} + \cdots + \frac{1}{2n-1} - \frac{1}{2n+1} \right) = \lim_{n \to \infty} \frac{1}{2} \left( 1 - \frac{1}{2n+1} \right) = \frac{1}{2}.


例35 已知 limx1x2+ax+b1x=5\lim_{x \to 1} \frac{x^{2} + ax + b}{1 - x} = 5, 求 a,ba, b.

【解】因分母的极限为 limx1(1x)=0\lim_{x \to 1} (1 - x) = 0, 而 limx1x2+ax+b1x=5\lim_{x \to 1} \frac{x^{2} + ax + b}{1 - x} = 5,

则分子的极限为 limx1(x2+ax+b)=1+a+b=0\lim_{x \to 1} (x^{2} + ax + b) = 1 + a + b = 0, 即 b=(1+a)b = -(1 + a),

于是 limx1x2+ax+b1x=limx1x2+ax(1+a)1x=limx1(x1)(x+1+a)1x\lim_{x \to 1} \frac{x^{2} + ax + b}{1 - x} = \lim_{x \to 1} \frac{x^{2} + ax - (1 + a)}{1 - x} = \lim_{x \to 1} \frac{(x - 1)(x + 1 + a)}{1 - x}

=limx1[(x+1+a)]=(a+2)=5= \lim_{x \to 1} [-(x + 1 + a)] = -(a + 2) = 5,

a=7,b=6a = -7, b = 6.


例 36 已知 limx(x2+1x+1axb)=0\lim_{x \to \infty} \left( \frac{x^{2} + 1}{x + 1} - ax - b \right) = 0, 则 a=___a = \_\_\_, b=___b = \_\_\_.

【解】通分得, limx(1a)x2(a+b)xb+1x+1=0\lim_{x \to \infty} \frac{(1-a)x^{2} - (a+b)x - b+1}{x+1} = 0, 可知 1a=01 - a = 0, 即 a=1a = 1.

a=1a = 1 时, 上式 =limx(1+b)xb+1x+1=(1+b)=0= \lim_{x \to \infty} \frac{-(1+b)x - b+1}{x+1} = -(1+b) = 0, 得 b=1b = -1, 则 a=1,b=1a = 1, b = -1.


2. 利用两个重要极限求极限

(1) 第一个重要极限: limx0sinxx=1\lim_{x \to 0} \frac{\sin x}{x} = 1.

推广: limx0sinαα=1\lim_{x \to 0} \frac{\sin \alpha}{\alpha} = 1 (α\alpha 为无穷小量).

由第一重要极限可得以下极限结果:

limx0tanxx=1,limx0arcsinxx=1,limx0arctanxx=1,limx01cosxx2=12,\lim_{x \to 0} \frac{\tan x}{x} = 1, \lim_{x \to 0} \frac{\arcsin x}{x} = 1, \lim_{x \to 0} \frac{\arctan x}{x} = 1, \lim_{x \to 0} \frac{1 - \cos x}{x^{2}} = \frac{1}{2},

limx0sinαxx=α,limx0sinαxsinβx=αβ\lim_{x \to 0} \frac{\sin \alpha x}{x} = \alpha, \lim_{x \to 0} \frac{\sin \alpha x}{\sin \beta x} = \frac{\alpha}{\beta} (β0\beta \neq 0, α,β\alpha, \beta 为常数).


(2) 第二个重要极限: limn(1+1n)n=e,limx(1+1x)x=e,limx0(1+x)1x=e\lim_{n \to \infty} \left( 1 + \frac{1}{n} \right)^{n} = e, \lim_{x \to \infty} \left( 1 + \frac{1}{x} \right)^{x} = e, \lim_{x \to 0} \left( 1 + x \right)^{\frac{1}{x}} = e.

推广: limx0(1+α)1α=e\lim_{x \to 0} \left( 1 + \alpha \right)^{\frac{1}{\alpha}} = e (α\alpha 为无穷小量).

由第二个重要极限可得以下极限结果:

limx(11x)x=1e,limx(1+ax)bx=eab,limx(1+ax)bx+c=eab\lim_{x \to \infty} \left( 1 - \frac{1}{x} \right)^{x} = \frac{1}{e}, \lim_{x \to \infty} \left( 1 + \frac{a}{x} \right)^{bx} = e^{ab}, \lim_{x \to \infty} \left( 1 + \frac{a}{x} \right)^{bx + c} = e^{ab}.

11^{\infty}”型极限常用结论.

limα(x)=0\lim \alpha(x) = 0, limβ(x)=\lim \beta(x) = \infty, 且 limα(x)β(x)=A\lim \alpha(x)\beta(x) = A, 则

lim[1+α(x)]β(x)=eA.\lim [1 + \alpha(x)]^{\beta(x)} = e^A.

可以归纳为以下三步:

(1) 写标准形式: 原式 =lim[1+α(x)]β(x)= \lim [1 + \alpha(x)]^{\beta(x)}.

(2) 求极限: limα(x)β(x)=A\lim \alpha(x)\beta(x) = A.

(3) 写结果: 原式 =eA= e^A.

(1) 第一重要极限是 00\frac{0}{0} 型,第二重要极限是 11^\infty 型.

(2) 利用第一重要极限求极限的题目,有时也可用洛必达法则.

(3) 幂指函数 11^\infty 型求极限,可利用第二重要极限来求.

例 37(1993,数一) limx3x2+55x+3sin2x=\lim_{x \to \infty} \frac{3x^2 + 5}{5x + 3} \sin \frac{2}{x} = ____.

【解】 原式 =limx3x2+55x+32xsin2x2x=limx6x2+105x2+3xlimxsin2x2x=65= \lim_{x \to \infty} \frac{3x^2 +5}{5x+3} \cdot \frac{2}{x} \cdot \frac{\sin \frac{2}{x}}{\frac{2}{x}} = \lim_{x \to \infty} \frac{6x^2 + 10}{5x^2 + 3x} \cdot \lim_{x \to \infty} \frac{\sin \frac{2}{x}}{\frac{2}{x}} = \frac{6}{5}.


例 38 limx1tan(x21)x1=\lim_{x \to 1} \frac{\tan (x^2 -1)}{x -1} = ______.

【解】 此极限为 00\frac{0}{0} 型,化简后可利用第一重要极限.

原式 =limx1sin(x21)cos(x21)1x1=limx1sin(x21)x211cos(x21)(x+1)= \lim_{x \to 1} \frac{\sin (x^2 -1)}{\cos (x^2 -1)} \cdot \frac{1}{x-1} = \lim_{x \to 1} \frac{\sin (x^2 -1)}{x^2 -1} \cdot \frac{1}{\cos (x^2 -1)} \cdot (x+1)

=limx1sin(x21)x21limx11cos(x21)limx1(x+1)=1×1×2=2.\begin{aligned} = \lim_{x \to 1} \frac{\sin (x^2 -1)}{x^2 -1} \cdot \lim_{x \to 1} \frac{1}{\cos (x^2 -1)} \cdot \lim_{x \to 1} (x+1) &= 1 \times 1 \times 2 = 2. \end{aligned}


例 39 limnn2(1cos1n)=\lim_{n \to \infty} n^2 \left( 1 - \cos \frac{1}{n} \right) = ______.

【解】 由 1cos1n=2sin212n1 - \cos \frac{1}{n} = 2 \sin^2 \frac{1}{2n}

原式 =limn2n2sin212n=limn12(sin12n12n)2=12(limnsin12n12n)2=12.= \lim_{n \to \infty} 2n^2 \sin^2 \frac{1}{2n} = \lim_{n \to \infty} \frac{1}{2} \left( \frac{\sin \frac{1}{2n}}{\frac{1}{2n}} \right)^2 = \frac{1}{2} \left( \lim_{n \to \infty} \frac{\sin \frac{1}{2n}}{\frac{1}{2n}} \right)^2 = \frac{1}{2}.


例 40 求下列极限

(1) limx0(12x)4x+3\lim_{x \to 0} (1-2x)^{\frac{4}{x} + 3}; (2) limx(2x+32x1)x2\lim_{x \to \infty} \left( \frac{2x+3}{2x-1} \right)^{x-2}; (3) limn(11n)n\lim_{n \to \infty} \left( 1 - \frac{1}{n} \right)^{\sqrt{n}}.

【解】 本题均为 11^\infty 型,可化为第二重要极限求出.

(1) 原式 =limx0(12x)4x(12x)3=limx0(12x)4xlimx0(12x)3= \lim_{x \to 0} (1-2x)^{\frac{4}{x}} \cdot (1-2x)^3 = \lim_{x \to 0} (1-2x)^{\frac{4}{x}} \cdot \lim_{x \to 0} (1-2x)^3

=limx0(12x)4x=limx0[1+(2x)](1x)(8)=[limx0(1+(2x))12x]8=e8.\begin{aligned} = \lim_{x \to 0} (1-2x)^{\frac{4}{x}} & = \lim_{x \to 0} \left[ 1 + (-2x) \right]^{(-\frac{1}{x}) \cdot (-8)} = \left[ \lim_{x \to 0} \left( 1 + (-2x) \right)^{-\frac{1}{2x}} \right]^{-8} = e^{-8}. \end{aligned}

(2) 原式 =limx(2x+32x1)xlimx(2x+32x1)2=limx(2x+32x1)x= \lim_{x \to \infty} \left( \frac{2x+3}{2x-1} \right)^x \cdot \lim_{x \to \infty} \left( \frac{2x+3}{2x-1} \right)^{-2} = \lim_{x \to \infty} \left( \frac{2x+3}{2x-1} \right)^x

=limx(1+32x112x)x=limx(1+32x)x(112x)x=e32e12=e2.\begin{aligned} = \lim_{x \to \infty} \left( \frac{1 + \frac{3}{2x}}{1 - \frac{1}{2x}} \right)^x & = \lim_{x \to \infty} \frac{\left( 1 + \frac{3}{2x} \right)^x}{\left( 1 - \frac{1}{2x} \right)^x} = \frac{e^{\frac{3}{2}}}{e^{-\frac{1}{2}}} = e^2. \end{aligned}

(3) 原式 =limn[(11n)(1+1n)]n=limn(11n)nlimn(1+1n)n=e1e=1.= \lim_{n \to \infty} \left[ \left( 1 - \frac{1}{\sqrt{n}} \right) \left( 1 + \frac{1}{\sqrt{n}} \right) \right]^{\sqrt{n}} = \lim_{n \to \infty} \left( 1 - \frac{1}{\sqrt{n}} \right)^{\sqrt{n}} \cdot \lim_{n \to \infty} \left( 1 + \frac{1}{\sqrt{n}} \right)^{\sqrt{n}} = \mathrm{e}^{-1} \cdot \mathrm{e} = 1.


例 41 (2010, 数一) 极限 limx[x2(xa)(x+b)]x=\lim_{x \to \infty} \left[ \frac{x^2}{(x-a)(x+b)} \right]^x = \,

(A) 11.

(B) e\mathrm{e}.

(C) eab\mathrm{e}^{a-b}.

(D) eba\mathrm{e}^{b-a}.

方法一:直接法

limx[x2(xa)(x+b)]x=limx(xxa)x(xx+b)x\lim_{x \to \infty} \left[ \frac{x^2}{(x-a)(x+b)} \right]^x = \lim_{x \to \infty} \left( \frac{x}{x-a} \right)^x \left( \frac{x}{x+b} \right)^x

=limx(1ax)x(1+bx)x= \lim_{x \to \infty} \left( 1-\frac{a}{x} \right)^{-x} \left( 1+\frac{b}{x} \right)^{-x}

=eaeb=eab.= \mathrm{e}^a \cdot \mathrm{e}^{-b} = \mathrm{e}^{a-b}.

故应选 (C).

方法二:排除法

a=0a=0,则

原式 =limx(xx+b)x=limx1(1+bx)x=eb.= \lim_{x \to \infty} \left( \frac{x}{x+b} \right)^x = \lim_{x \to \infty} \frac{1}{\left( 1+\frac{b}{x} \right)^x} = \mathrm{e}^{-b}.

则选项 (A) (B) (D) 都不正确,故应选 (C).


例 42 limnnn+1(n+1)nsin1n=\lim_{n \to \infty} \frac{n^{n+1}}{(n+1)^n} \sin \frac{1}{n} =

【解】 原式 =limnnn(n+1)nnsin1n=limn1(1+1n)nsin1n1n=1e.= \lim_{n \to \infty} \frac{n^n}{(n+1)^n} n \sin \frac{1}{n} = \lim_{n \to \infty} \frac{1}{\left( 1+\frac{1}{n} \right)^n} \cdot \frac{\sin \frac{1}{n}}{\frac{1}{n}} = \frac{1}{\mathrm{e}}.

【评注】

limnnn(n+1)n=1\lim_{n \to \infty} \frac{n^n}{(n+1)^n} = 1 是“经典的错误”,limnnn(n+1)n=limn1(1+1n)n=1e.\lim_{n \to \infty} \frac{n^n}{(n+1)^n} = \lim_{n \to \infty} \frac{1}{\left( 1+\frac{1}{n} \right)^n} = \frac{1}{\mathrm{e}}.


例43 (2011, 数二) limx0(1+2x2)1x=\lim_{x \to 0} \left( \frac{1+2^x}{2} \right)^{\frac{1}{x}} =

【解】方法一:11^\infty

原式 =limx0e1xln1+2x2=elimx01xln1+2x2,= \lim_{x \to 0} \mathrm{e}^{\frac{1}{x} \ln \frac{1+2^x}{2}} = \mathrm{e}^{\lim_{x \to 0} \frac{1}{x} \ln \frac{1+2^x}{2}},

limx01xln1+2x2=limx0ln(1+2x)ln2x=limx02xln21+2x(洛必达法则)\lim_{x \to 0} \frac{1}{x} \ln \frac{1+2^x}{2} = \lim_{x \to 0} \frac{\ln(1+2^x)-\ln 2}{x} = \lim_{x \to 0} \frac{2^x \ln 2}{1+2^x} \quad (\text{洛必达法则})

=limx02xln21+2x=ln22,= \lim_{x \to 0} \frac{2^x \ln 2}{1+2^x} = \frac{\ln 2}{2},

limx0(1+2x2)1x=eln22=2.\lim_{x \to 0} \left( \frac{1+2^x}{2} \right)^{\frac{1}{x}} = \mathrm{e}^{\frac{\ln 2}{2}} = \sqrt{2}.

方法二:由于是 11^\infty 型,利用第二重要极限

原式 =limx0(1+2x12)22x1=limx0[(1+2x12)22x1]2x12x= \lim_{x \to 0} \left( 1 + \frac{2^x-1}{2} \right)^{\frac{2}{2^x-1}} = \lim_{x \to 0} \left[ \left( 1 + \frac{2^x-1}{2} \right)^{\frac{2}{2^x-1}} \right]^{\frac{2^x-1}{2x}}

=[limx0(1+2x12)22x1]limx02x12x.= \left[ \lim_{x \to 0} \left( 1 + \frac{2^x-1}{2} \right)^{\frac{2}{2^x-1}} \right]^{\lim_{x \to 0} \frac{2^x-1}{2x}}.

limx0(1+2x12)22x1=e\lim _{x \rightarrow 0}\left(1+\frac{2^{x}-1}{2}\right)^{\frac{2}{2^{x}-1}}=e (第二重要极限)

limx02x12x=limx02xln22=ln22\lim _{x \rightarrow 0} \frac{2^{x}-1}{2x}=\lim _{x \rightarrow 0} \frac{2^{x} \ln 2}{2}=\frac{\ln 2}{2} (洛必达法则)

limx0(1+2x2)1x=eln22=2\lim _{x \to 0}\left(\frac{1+2^{x}}{2}\right)^{\frac{1}{x}}=e^{\frac{\ln ^{2}}{2}}=\sqrt{2}.

【评注】

求幂指函数 f(x)g(x)f(x)^{g(x)} 的极限,常用以下方法:

方法 1 利用 f(x)g(x)=eg(x)lnf(x)f(x)^{g(x)}=\mathrm{e}^{g(x) \ln f(x)},则

limf(x)g(x)=elimg(x)lnf(x).\lim f(x)^{g(x)}=\mathrm{e}^{\lim g(x) \ln f(x)}. (此为一般方法)

方法 2 若为 11^{\infty} 型,可利用第二重要极限。

方法 3 若 limf(x)=A>0,limg(x)=B\lim f(x)=A>0,\lim g(x)=B,则 limf(x)g(x)=AB\lim f(x)^{g(x)}=A^{B}.


3. 利用等价无穷小替换求极限

等价无穷小替换定理

在某一变化过程中,设 f1(x)f2(x),g1(x)g2(x)f_{1}(x) \sim f_{2}(x), g_{1}(x) \sim g_{2}(x),且

limf1(x)g2(x)\lim \frac{f_{1}(x)}{g_{2}(x)}

存在,则

limf1(x)g1(x)=limf2(x)g2(x)\lim \frac{f_{1}(x)}{g_{1}(x)}=\lim \frac{f_{2}(x)}{g_{2}(x)}.

【注】 (1) 对分子或分母中的一个或几个无穷小因子作等价替换。

(2) 可推广:

limf1(x)g1(x)=limf2(x)g2(x)=limf1(x)g2(x)=limf2(x)g1(x).limf1(x)h(x)g1(x)=limf2(x)h(x)g2(x)=limf1(x)h(x)g2(x)=limf2(x)h(x)g1(x).limf1(x)g1(x)h(x)=limf2(x)g2(x)h(x)=limf1(x)g2(x)h(x)=limf2(x)g1(x)h(x).limf1(x)h(x)=limf2(x)h(x).\begin{aligned} &\lim \frac{f_{1}(x)}{g_{1}(x)} = \lim \frac{f_{2}(x)}{g_{2}(x)} = \lim \frac{f_{1}(x)}{g_{2}(x)} = \lim \frac{f_{2}(x)}{g_{1}(x)}. \\ &\lim \frac{f_{1}(x) h(x)}{g_{1}(x)} = \lim \frac{f_{2}(x) h(x)}{g_{2}(x)} = \lim \frac{f_{1}(x) h(x)}{g_{2}(x)} = \lim \frac{f_{2}(x) h(x)}{g_{1}(x)}. \\ &\lim \frac{f_{1}(x)}{g_{1}(x) h(x)} = \lim \frac{f_{2}(x)}{g_{2}(x) h(x)} = \lim \frac{f_{1}(x)}{g_{2}(x) h(x)} = \lim \frac{f_{2}(x)}{g_{1}(x) h(x)}. \\ &\lim f_{1}(x) h(x) = \lim f_{2}(x) h(x). \end{aligned}

(3) 和差关系在满足一定条件下可以作等价替换。

limf1(x)g1(x)=A1\lim \frac{f_{1}(x)}{g_{1}(x)}=A \neq 1,则 lim[f1(x)g1(x)]=lim[f2(x)g2(x)]\lim \left[f_{1}(x)-g_{1}(x)\right]=\lim \left[f_{2}(x)-g_{2}(x)\right]
limf1(x)g1(x)=A1\lim \frac{f_{1}(x)}{g_{1}(x)}=A \neq-1,则 lim[f1(x)+g1(x)]=lim[f2(x)+g2(x)]\lim \left[f_{1}(x)+g_{1}(x)\right]=\lim \left[f_{2}(x)+g_{2}(x)\right].


常用的等价无穷小

x0x \rightarrow 0 时,

sinxx,tanxx,arcsinxx,arctanxx,1cosx12x2,ln(1+x)x,ex1x,ax1xlna,(1+x)α1αx(α0),1+x311nx,1+x1xx,xsinx16x3,tanxx13x3,xln(1+x)12x2,arcsinxx16x3,xarctanx13x3.\begin{aligned} &\sin x \sim x, \quad \tan x \sim x, \quad \arcsin x \sim x, \quad \arctan x \sim x, \\ &1-\cos x \sim \frac{1}{2} x^{2}, \quad \ln (1+x) \sim x, \quad \mathrm{e}^{x}-1 \sim x, \quad a^{x}-1 \sim x \ln a, \\ &(1+x)^{\alpha}-1 \sim \alpha x (\alpha \neq 0), \quad \sqrt[3]{1+x}-1 \sim \frac{1}{n} x, \quad \sqrt{1+x}-\sqrt{1-x} \sim x, \\ &x-\sin x \sim \frac{1}{6} x^{3}, \quad \tan x-x \sim \frac{1}{3} x^{3}, \quad x-\ln (1+x) \sim \frac{1}{2} x^{2}, \\ &\arcsin x-x \sim \frac{1}{6} x^{3}, \quad x-\arctan x \sim \frac{1}{3} x^{3}. \end{aligned}


上述等价无穷小中的 xx 换为无穷小量 α(x)\alpha(x),等价关系照样成立.

推广: 当 α(x)\alpha(x) 是无穷小时,

sinα(x)α(x),tanα(x)α(x),arcsinα(x)α(x),\sin \alpha(x) \sim \alpha(x), \quad \tan \alpha(x) \sim \alpha(x), \quad \arcsin \alpha(x) \sim \alpha(x), arctanα(x)α(x),1cosα(x)12[α(x)]2,\arctan \alpha(x) \sim \alpha(x), \quad 1-\cos \alpha(x) \sim \frac{1}{2}[\alpha(x)]^2, ln[1+α(x)]α(x),eα(x)1α(x),\ln[1+\alpha(x)] \sim \alpha(x), \quad e^{\alpha(x)}-1 \sim \alpha(x), [1+α(x)]k1kα(x)(k0),1+α(x)n11nα(x).[1+\alpha(x)]^k-1 \sim k\alpha(x) \, (k \neq 0), \quad \sqrt[n]{1+\alpha(x)}-1 \sim \frac{1}{n}\alpha(x).

例44 (2006,数一)

limx0xln(1+x)1cosx=.\lim_{x \to 0} \frac{x \ln(1+x)}{1-\cos x} = \, \underline{\hspace{1cm}}.

【解】
00\frac{0}{0} 型。
原式 =limx0x212x2=2= \lim_{x \to 0} \frac{x^2}{\frac{1}{2}x^2} = 2 (等价无穷小替换)。


例45 (2005,数三)

limxxsin2xx2+1=.\lim_{x \to \infty} x \sin \frac{2x}{x^2+1} = \, \underline{\hspace{1cm}}.

【解】
xx \to \infty 时,2xx2+1\frac{2x}{x^2+1} 为无穷小,则 sin2xx2+12xx2+1\sin \frac{2x}{x^2+1} \sim \frac{2x}{x^2+1}.
于是,

limxxsin2xx2+1=limxx2xx2+1(等价无穷小替换)\lim_{x \to \infty} x \sin \frac{2x}{x^2+1} = \lim_{x \to \infty} x \cdot \frac{2x}{x^2+1} \quad \text{(等价无穷小替换)} =limx2x2x2+1=2.= \lim_{x \to \infty} \frac{2x^2}{x^2+1} = 2.

例46 (1997,数一) 求极限

limx03sinx+x2cos1x(1+cosx)ln(1+x).\lim_{x \to 0} \frac{3\sin x + x^2 \cos \frac{1}{x}}{(1+\cos x)\ln(1+x)}.

【解】
第一步:分析分子和分母 原式为:

limx03sinx+x2cos1x(1+cosx)x.\lim_{x \to 0} \frac{3 \sin x + x^2 \cos \frac{1}{x}}{(1 + \cos x)x}.
  • 分子3sinx+x2cos1x3 \sin x + x^2 \cos \frac{1}{x}
  • 分母(1+cosx)x(1 + \cos x)x

第二步:处理分母 当 x0x \to 0 时:

  • cosx1\cos x \to 1,因此 1+cosx21 + \cos x \to 2
  • 分母 (1+cosx)x(1 + \cos x)x 可以近似为 2x2x

第三步:处理分子 分子为 3sinx+x2cos1x3 \sin x + x^2 \cos \frac{1}{x}

  1. 第一项 3sinx3 \sin x

    • x0x \to 0 时,sinxx\sin x \sim x,因此 3sinx3x3 \sin x \sim 3x
  2. 第二项 x2cos1xx^2 \cos \frac{1}{x}

    • cos1x\cos \frac{1}{x} 是有界函数,其值在 [1,1][-1, 1] 之间。
    • x0x \to 0 时,x20x^2 \to 0,因此 x2cos1x0x^2 \cos \frac{1}{x} \to 0

第四步:代入极限表达式 将分子和分母的近似值代入原式:

limx03sinx+x2cos1x(1+cosx)xlimx03x+02x.\lim_{x \to 0} \frac{3 \sin x + x^2 \cos \frac{1}{x}}{(1 + \cos x)x} \sim \lim_{x \to 0} \frac{3x + 0}{2x}.

第五步:化简极限

limx03x+02x=limx03x2x=limx032=32.\lim_{x \to 0} \frac{3x + 0}{2x} = \lim_{x \to 0} \frac{3x}{2x} = \lim_{x \to 0} \frac{3}{2} = \frac{3}{2}.

最终答案

32\boxed{\frac{3}{2}}

例47 求极限

limx0sinxtanx(1+x231)(1+sinx1).\lim_{x \to 0} \frac{\sin x - \tan x}{(\sqrt[3]{1+x^2}-1)(\sqrt{1+\sin x}-1)}.

【解】
x0x \to 0 时,1+x23113x2\sqrt[3]{1+x^2}-1 \sim \frac{1}{3}x^2, 1+sinx112sinx12x\sqrt{1+\sin x}-1 \sim \frac{1}{2}\sin x \sim \frac{1}{2}x, 则
原式 =limx0sinxtanx13x212x(等价无穷小替换)= \lim_{x \to 0} \frac{\sin x - \tan x}{\frac{1}{3}x^2 \cdot \frac{1}{2}x} \quad \text{(等价无穷小替换)}

=limx0sinx(11cosx)16x3=limx0sinx(cosx1)16x3cosx.= \lim_{x \to 0} \frac{\sin x \cdot \left(1-\frac{1}{\cos x}\right)}{\frac{1}{6}x^3} = \lim_{x \to 0} \frac{\sin x \cdot (\cos x-1)}{\frac{1}{6}x^3 \cdot \cos x}.

= limx0x(12x2)16x3cosx=limx0(3cosx)=3.lim_{x \to 0} \frac{x \cdot \left(-\frac{1}{2}x^2\right)}{\frac{1}{6}x^3 \cos{x}} = lim_{x \to 0} \left(-\frac{3}{\cos{x}}\right) = -3.

本题中,分子中的 sinx\sin{x}, tanx\tan{x} 不能分别替换为 xx, 因为是在和差项中.


例48(2009,数三) limx0eecosx1+x231=\lim_{x \to 0} \frac{e - e^{\cos{x}}}{\sqrt[3]{1 + x^2} - 1} = ___.

【解】原式 = limx0ecosx(e1cosx1)13x2=limx0ecosxlimx0e1cosx113x2\lim_{x \to 0} \frac{e^{\cos{x}}(e^{1-\cos{x}} - 1)}{\frac{1}{3}x^2} = \lim_{x \to 0} e^{\cos{x}} \cdot \lim_{x \to 0} \frac{e^{1-\cos{x}} - 1}{\frac{1}{3}x^2}

=elimx01cosx13x2(等价无穷小替换:e1cosx11cosx= e \lim_{x \to 0} \frac{1 - \cos{x}}{\frac{1}{3}x^2} \quad \text{(等价无穷小替换:$e^{1-\cos{x}} - 1 \sim 1 - \cos{x}$)} =elimx012x213x2=3e2.= e \lim_{x \to 0} \frac{\frac{1}{2}x^2}{\frac{1}{3}x^2} = \frac{3e}{2}.

【评注】本题可用洛必达法则及拉格朗日中值定理求解.


例49(2015,数一) limx0ln(cosx)x2=\lim_{x \to 0} \frac{\ln(\cos{x})}{x^2} = _______.

【解】原式 = limx0ln[1+(cosx1)]x2\lim_{x \to 0} \frac{\ln[1 + (\cos{x} - 1)]}{x^2}

=limx0cosx1x2(等价无穷小替换)= \lim_{x \to 0} \frac{\cos{x} - 1}{x^2} \quad \text{(等价无穷小替换)} =limx012x2x2= \lim_{x \to 0} \frac{-\frac{1}{2}x^2}{x^2} =12.= -\frac{1}{2}.

【评注】本题也可用洛必达法则及拉格朗日中值定理求解.


例50x0x \to 0 时,(1+x)a1ax(1 + x)^a - 1 \sim ax. 证明:若 α(x)0\alpha(x) \to 0, α(x)β(x)0\alpha(x) \beta(x) \to 0,则

(1+α(x))β(x)1α(x)β(x).(1 + \alpha(x))^{\beta(x)} - 1 \sim \alpha(x) \beta(x).

【证】因 (1+α(x))β(x)=eβ(x)ln(1+α(x))(1 + \alpha(x))^{\beta(x)} = e^{\beta(x) \ln(1 + \alpha(x))},则

lim(1+α(x))β(x)1α(x)β(x)=limeβ(x)ln(1+α(x))1α(x)β(x)\lim \frac{(1 + \alpha(x))^{\beta(x)} - 1}{\alpha(x) \beta(x)} = \lim \frac{e^{\beta(x) \ln(1 + \alpha(x))} - 1}{\alpha(x) \beta(x)} =limβ(x)ln(1+α(x))α(x)β(x)(等价无穷小替换)= \lim \frac{\beta(x) \ln(1 + \alpha(x))}{\alpha(x) \beta(x)} \quad \text{(等价无穷小替换)} =limln(1+α(x))α(x)=1.= \lim \frac{\ln(1 + \alpha(x))}{\alpha(x)} = 1.

所以,(1+α(x))β(x)1α(x)β(x)(1 + \alpha(x))^{\beta(x)} - 1 \sim \alpha(x) \beta(x).

【评注】本题可作结论用,但要注意条件.


例51 (2006, 数二) 求极限 limx01x3[(2+cosx3)x1]\lim _{x \rightarrow 0} \frac{1}{x^{3}}\left[\left(\frac{2+\cos x}{3}\right)^{x}-1\right].

方法一 原式 =limx01x3[exln(2+cosx3)1]= \lim _{x \rightarrow 0} \frac{1}{x^{3}}\left[e^{x \ln \left(\frac{2+\cos x}{3}\right)}-1\right]

=limx0xln(2+cosx3)x3(等价无穷小替换)= \lim _{x \rightarrow 0} \frac{x \ln \left(\frac{2+\cos x}{3}\right)}{x^{3}} \quad \text{(等价无穷小替换)} =limx0ln(1+cosx13)x2= \lim _{x \rightarrow 0} \frac{\ln \left(1+\frac{\cos x-1}{3}\right)}{x^{2}} =limx0cosx13x2(等价无穷小替换)= \lim _{x \rightarrow 0} \frac{\cos x-1}{3x^{2}} \quad \text{(等价无穷小替换)} =limx012x23x2=16.= \lim _{x \rightarrow 0} \frac{-\frac{1}{2} x^{2}}{3x^{2}} = -\frac{1}{6}.

方法二 原式 =limx01x3[(1+cosx13)x1]= \lim _{x \rightarrow 0} \frac{1}{x^{3}}\left[\left(1+\frac{\cos x-1}{3}\right)^{x}-1\right]

=limx0x(cosx13)x3(等价无穷小替换)= \lim _{x \rightarrow 0} \frac{x\left(\frac{\cos x-1}{3}\right)}{x^{3}} \quad \text{(等价无穷小替换)} =limx0cosx13x2= \lim _{x \rightarrow 0} \frac{\cos x-1}{3x^{2}} =limx012x23x2=16.= \lim _{x \rightarrow 0} \frac{-\frac{1}{2} x^{2}}{3x^{2}} = -\frac{1}{6}.

评注

方法一是常规做法,对于幂指函数 f(x)g(x)f(x)^{g(x)} 通常取指数写为 eg(x)lnf(x)e^{g(x) \ln f(x)}.

方法二利用例 50 的结论,可知当 x0x \rightarrow 0 时,

(1+cosx13)x1x(cosx1)3\left(1+\frac{\cos x-1}{3}\right)^{x}-1 \sim \frac{x(\cos x-1)}{3}

(2016, 数三) 已知函数 f(x)f(x) 满足 limx01+f(x)sin2x1e3x1=2\lim _{x \rightarrow 0} \frac{\sqrt{1+f(x) \sin 2x}-1}{e^{3x}-1} = 2,则 limx0f(x)=\lim _{x \rightarrow 0} f(x) = ______.

【解】

limx01+f(x)sin2x1e3x1=2\lim _{x \rightarrow 0} \frac{\sqrt{1+f(x) \sin 2x}-1}{e^{3x}-1} = 2limx0(e3x1)=0\lim_{x \rightarrow 0}(e^{3x}-1) = 0 知,limx0f(x)sin2x=0\lim_{x \rightarrow 0} f(x) \sin 2x = 0.

limx01+f(x)sin2x1e3x1=limx012f(x)sin2x3x(等价无穷小替换)\lim _{x \rightarrow 0} \frac{\sqrt{1+f(x) \sin 2x}-1}{e^{3x}-1} = \lim _{x \rightarrow 0} \frac{\frac{1}{2} f(x) \sin 2x}{3x} \quad \text{(等价无穷小替换)} =limx012f(x)2x3x(等价无穷小替换)= \lim _{x \rightarrow 0} \frac{\frac{1}{2} f(x) \cdot 2x}{3x} \quad \text{(等价无穷小替换)} =13limx0f(x)=2,= \frac{1}{3} \lim _{x \rightarrow 0} f(x) = 2,

limx0f(x)=6\lim _{x \rightarrow 0} f(x) = 6.

【评注】可利用极限的性质解出 f(x)f(x).

4. 利用洛必达法则求极限

洛必达法则


(1) limxx0f(x)=limxx0g(x)=0\lim _{x \rightarrow x_{0}} f(x)=\lim _{x \rightarrow x_{0}} g(x)=0(或 \infty);
(2) f(x)f(x)g(x)g(x)x0x_{0} 的某去心邻域内可导,且 g(x)0g^{\prime}(x) \neq 0
(3) limxx0f(x)g(x)\lim _{x \rightarrow x_{0}} \frac{f^{\prime}(x)}{g^{\prime}(x)} 存在(或为 \infty),

limxx0f(x)g(x)=limxx0f(x)g(x).\lim _{x \rightarrow x_{0}} \frac{f(x)}{g(x)}=\lim _{x \rightarrow x_{0}} \frac{f^{\prime}(x)}{g^{\prime}(x)}.
(1)洛必达法则适应类型

洛必达法则可用来求七种类型未定式的极限,即 00,,±,0,1,0,00\frac{0}{0}, \frac{\infty}{\infty}, \infty \pm \infty, 0 \cdot \infty, 1^{\infty}, \infty^{0}, 0^{0},其中前两种 00,\frac{0}{0}, \frac{\infty}{\infty} 可以直接用洛必达法则,后五种均可化为前两种。

0 化为商的形式 00 或 ± 通分或有理化 00 或 1,0,00 取指数 eln0 化商 00 或  洛必达法则\begin{aligned} 0 \cdot \infty & \xrightarrow{\text { 化为商的形式 }} \frac{0}{0} \text { 或 } \frac{\infty}{\infty} \\ \infty \pm \infty & \xrightarrow{\text { 通分或有理化 }} \frac{0}{0} \text { 或 } \frac{\infty}{\infty} \\ 1^{\infty}, \infty^{0}, 0^{0} & \xrightarrow{\text { 取指数 } \mathrm{e}^{\ln}} 0 \cdot \infty \xrightarrow{\text { 化商 }} \frac{0}{0} \text { 或 } \frac{\infty}{\infty} \end{aligned} \quad \Rightarrow \text { 洛必达法则}
(2)使用洛必达法则应该注意的几个问题

① 使用洛必达法则之前,应该先检验其条件是否满足;
② 使用洛必达法则之后,如果问题仍然是未定型极限,且仍符合洛必达法则条件,可以再次使用洛必达法则;
③ 如果“00\frac{0}{0}”型或“\frac{\infty}{\infty}”型极限中的函数含有极限非零的因子,可以单独求极限,不必参与洛必达法则运算,以简化运算;
④ 如果能进行等价无穷小量替换或恒等变形配合洛必达法则使用,也可以简化运算;
⑤ 当 xx0+,x0,+,x \rightarrow x_{0}^{+}, x_{0}^{-}, +\infty, -\infty 时,有类似洛必达法则的形式。


例53 (2007,数二)

limx0arctanxsinxx3=\lim _{x \rightarrow 0} \frac{\arctan x - \sin x}{x^{3}} = \quad

【解】
00\frac{0}{0} 型。

方法一
原式 =limx01+x23x2= \lim _{x \rightarrow 0} \frac{1+x^{2}}{3x^{2}}(洛必达法则)

=limx01cosxx2cosx3x2(1+x2)=limx013(1+x2)limx01cosxx2cosxx2= \lim _{x \rightarrow 0} \frac{1-\cos x - x^{2} \cos x}{3x^{2}(1+x^{2})} = \lim _{x \rightarrow 0} \frac{1}{3(1+x^{2})} \cdot \lim _{x \rightarrow 0} \frac{1-\cos x - x^{2} \cos x}{x^{2}} =13(limx01cosxx2limx0cosx)=13(121)=16.= \frac{1}{3} \left( \lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}} - \lim _{x \rightarrow 0} \cos x \right) = \frac{1}{3} \left( \frac{1}{2} - 1 \right) = -\frac{1}{6}.

方法二

limx0arctanxsinxx3=limx0arctanxx+xsinxx3\lim _{x \rightarrow 0} \frac{\arctan x - \sin x}{x^{3}} = \lim _{x \rightarrow 0} \frac{\arctan x - x + x - \sin x}{x^{3}} =limx013x3+16x3x3=16.= \lim _{x \rightarrow 0} \frac{-\frac{1}{3}x^{3} + \frac{1}{6}x^{3}}{x^{3}} = -\frac{1}{6}.

【评注】可用泰勒公式求解。


例54 求极限 limx0exex2xxsinx\lim _{x \rightarrow 0} \frac{\mathrm{e}^x - \mathrm{e}^{-x} - 2x}{x - \sin x}.

【解】此极限为 00\frac{0}{0} 型.

方法一 原式 =limx0ex+ex21cosx= \lim _{x \rightarrow 0} \frac{\mathrm{e}^x + \mathrm{e}^{-x} - 2}{1 - \cos x} (洛必达法则)
=limx0exexsinx= \lim _{x \rightarrow 0} \frac{\mathrm{e}^x - \mathrm{e}^{-x}}{\sin x} (洛必达法则)
=limx0ex+excosx=2= \lim _{x \rightarrow 0} \frac{\mathrm{e}^x + \mathrm{e}^{-x}}{\cos x} = 2.

方法二 原式 =limx0ex+ex21cosx=limx0ex+ex212x2= \lim _{x \rightarrow 0} \frac{\mathrm{e}^x + \mathrm{e}^{-x} - 2}{1 - \cos x} = \lim _{x \rightarrow 0} \frac{\mathrm{e}^x + \mathrm{e}^{-x} - 2}{\frac{1}{2} x^2} (等价无穷小替换)
=limx0exexx=limx0(ex+ex)=2= \lim _{x \rightarrow 0} \frac{\mathrm{e}^x - \mathrm{e}^{-x}}{x} = \lim _{x \rightarrow 0} (\mathrm{e}^x + \mathrm{e}^{-x}) = 2.

【评注】可用泰勒公式求解.


例55 (1998, 数四) 求极限 limn(ntan1n)n2\lim _{n \rightarrow \infty}\left(n \tan \frac{1}{n}\right)^{n^2}.

【解】limn(ntan1n)n2=limx0+(tanxx)1x2=limx0+e1x2lntanxx=elimx0+1x2lntanxx\lim _{n \rightarrow \infty}\left(n \tan \frac{1}{n}\right)^{n^2} = \lim _{x \rightarrow 0^+} \left(\frac{\tan x}{x}\right)^{\frac{1}{x^2}} = \lim _{x \rightarrow 0^+} \mathrm{e}^{\frac{1}{x^2} \ln \frac{\tan x}{x}} = \mathrm{e}^{\lim _{x \rightarrow 0^+} \frac{1}{x^2} \ln \frac{\tan x}{x}},
limx0+1x2lntanxx=limx0+lntanxlnxx2=limx0+1tanxsec2x1x2x\lim _{x \rightarrow 0^+} \frac{1}{x^2} \ln \frac{\tan x}{x} = \lim _{x \rightarrow 0^+} \frac{\ln \tan x - \ln x}{x^2} = \lim _{x \rightarrow 0^+} \frac{\frac{1}{\tan x} \sec^2 x - \frac{1}{x}}{2x} (洛必达法则)
=limx0+2sin2xx2x=limx0+2xsin2x4x3=limx0+2(1cos2x)12x2= \lim _{x \rightarrow 0^+} \frac{2 - \frac{\sin 2x}{x}}{2x} = \lim _{x \rightarrow 0^+} \frac{2x - \sin 2x}{4x^3} = \lim _{x \rightarrow 0^+} \frac{2(1 - \cos 2x)}{12x^2} (洛必达法则)
=limx0+212(2x)212x2=13= \lim _{x \rightarrow 0^+} \frac{2 \cdot \frac{1}{2}(2x)^2}{12x^2} = \frac{1}{3}, (等价无穷小替换)
所以 limn(ntan1n)n2=e13\lim _{n \rightarrow \infty}\left(n \tan \frac{1}{n}\right)^{n^2} = \mathrm{e}^{\frac{1}{3}}.

【评注】可直接按数列 11^\infty 型计算.


例56 (2011, 数三) 求极限 limx01+2sinxx1xln(1+x)\lim _{x \rightarrow 0} \frac{\sqrt{1 + 2\sin x} - x - 1}{x \ln (1 + x)}.

【解】原式 =limx01+2sinxx1x2= \lim _{x \rightarrow 0} \frac{\sqrt{1 + 2\sin x} - x - 1}{x^2} (等价无穷小替换)
=limx0cosx21+2sinx12x= \lim _{x \rightarrow 0} \frac{\frac{\cos x}{2\sqrt{1 + 2\sin x}} - 1}{2x} (洛必达法则)

=limx0cosx1+2sinx2x1+2sinx=limx0cosx1+2sinx2xlimx011+2sinxsinxcosx1+2sinx=limx01+2sinx2=12.\begin{aligned} &= \lim_{x \to 0} \frac{\cos x - \sqrt{1 + 2 \sin x}}{2x \sqrt{1 + 2 \sin x}} \\ &= \lim_{x \to 0} \frac{\cos x - \sqrt{1 + 2 \sin x}}{2x} \cdot \lim_{x \to 0} \frac{1}{\sqrt{1 + 2 \sin x}} \\ &- \sin x - \frac{\cos x}{\sqrt{1 + 2 \sin x}} = \lim_{x \to 0} \frac{\sqrt{1 + 2 \sin x}}{2} = -\frac{1}{2}. \end{aligned}

【评注】本题也可对分子有理化.


例 57 (2012, 数三) 求极限 limx0ex2e22cosxx4\lim_{x \to 0} \frac{e^{x^2} - e^{2 - 2 \cos x}}{x^4}.

【解】 00\frac{0}{0} 型.

原式 =limx0e22cosx(ex22+2cosx1)x4=limx0e22cosxlimx0ex22+2cosx1x4= \lim_{x \to 0} \frac{e^{2 - 2 \cos x} \left( e^{x^2 - 2 + 2 \cos x} - 1 \right)}{x^4} = \lim_{x \to 0} e^{2 - 2 \cos x} \lim_{x \to 0} \frac{e^{x^2 - 2 + 2 \cos x} - 1}{x^4}

=limx0ex22+2cosx1x4=limx0x22+2cosxx4(等价无穷小替换)= \lim_{x \to 0} \frac{e^{x^2 - 2 + 2 \cos x} - 1}{x^4} = \lim_{x \to 0} \frac{x^2 - 2 + 2 \cos x}{x^4} \quad (\text{等价无穷小替换})

=limx02x2sinx4x3=limx022cosx12x2(洛必达法则)= \lim_{x \to 0} \frac{2x - 2 \sin x}{4x^3} = \lim_{x \to 0} \frac{2 - 2 \cos x}{12x^2} \quad (\text{洛必达法则})

=limx01cosx6x2=limx026x2=112.(等价无穷小替换)= \lim_{x \to 0} \frac{1 - \cos x}{6x^2} = \lim_{x \to 0} \frac{2}{6x^2} = \frac{1}{12}. \quad (\text{等价无穷小替换})


例 58 limxπ2+ln(xπ2)tanx=\lim_{x \to \frac{\pi}{2}^+} \frac{\ln \left( x - \frac{\pi}{2} \right)}{\tan x} = \quad ________.

【解】此极限为 \frac{\infty}{\infty} 型.

原式 =limxπ2+1xπ21sec2x=limxπ2+cos2xxπ2=limxπ2+2sinxcosx1=0.= \lim_{x \to \frac{\pi}{2}^+} \frac{1}{x - \frac{\pi}{2}} \cdot \frac{1}{\sec^2 x} = \lim_{x \to \frac{\pi}{2}^+} \frac{\cos^2 x}{x - \frac{\pi}{2}} = \lim_{x \to \frac{\pi}{2}^+} \frac{-2 \sin x \cos x}{1} = 0.


例 59 (1988, 数三) 求极限 limx1(1x2)tanπ2x\lim_{x \to 1} (1 - x^2) \tan \frac{\pi}{2} x.

【解】此极限为 00 \cdot \infty 型,先化为 00\frac{0}{0} 型,再用洛必达法则.

原式 =limx11x2cotπ2x=limx12xπ2csc2π2x=4πlimx1xsin2π2x=4π.= \lim_{x \to 1} \frac{1 - x^2}{\cot \frac{\pi}{2} x} = \lim_{x \to 1} \frac{-2x}{-\frac{\pi}{2} \csc^2 \frac{\pi}{2} x} = \frac{4}{\pi} \lim_{x \to 1} x \sin^2 \frac{\pi}{2} x = \frac{4}{\pi}.


例 60 (2005, 数三、四) 求极限 limx0(1+x1ex1x)\lim_{x \to 0} \left( \frac{1 + x}{1 - e^{-x}} - \frac{1}{x} \right).

【解】此极限为 \infty - \infty 型,先通分化为商.

原式 =limx0x+x2+ex1x(1ex)=limx0x+x2+ex1x2(等价无穷小替换)= \lim_{x \to 0} \frac{x + x^2 + e^{-x} - 1}{x(1 - e^{-x})} = \lim_{x \to 0} \frac{x + x^2 + e^{-x} - 1}{x^2} \quad (\text{等价无穷小替换})

=limx01+2xex2x(洛必达法则)=limx02+ex2=32.\begin{aligned} &= \lim_{x \to 0} \frac{1+2x-e^{-x}}{2x} \quad (\text{洛必达法则}) \\ &= \lim_{x \to 0} \frac{2+e^{-x}}{2} = \frac{3}{2}. \end{aligned}


例 61 (1994,数三) 求极限 limx[xx2ln(1+1x)]\lim_{x \to \infty} \left[ x - x^2 \ln \left(1 + \frac{1}{x}\right) \right].

【解】\infty - \infty 型.

x=1tx = \frac{1}{t},则 limx[1t1t2ln(1+t)]=limt0tln(1+t)t2\lim_{x \to \infty} \left[ \frac{1}{t} - \frac{1}{t^2} \ln(1+t) \right] = \lim_{t \to 0} \frac{t - \ln(1+t)}{t^2}

=limt01t211+t2tt2(洛必达法则)=limt012(1+t)=12.\begin{aligned} & = \lim_{t \to 0} \frac{\frac{1}{t^2} - \frac{1}{1+t}}{\frac{2t}{t^2}} \quad (\text{洛必达法则}) \\ & = \lim_{t \to 0} \frac{1}{2(1+t)} = \frac{1}{2}. \end{aligned}

例 62 (2020,数一) limx0[1ex11ln(1+x)]\lim_{x \to 0} \left[ \frac{1}{e^x-1} - \frac{1}{\ln(1+x)} \right].

【解】\infty - \infty 型.

原式 =limx0ln(1+x)ex+1(ex1)ln(1+x)=limx0ln(1+x)ex+1x2(等价无穷小替换)= \lim_{x \to 0} \frac{\ln(1+x) - e^x + 1}{(e^x-1)\ln(1+x)} = \lim_{x \to 0} \frac{\ln(1+x) - e^x + 1}{x^2} \quad (\text{等价无穷小替换})

=limx011+xex2x(洛必达法则)=limx0(1+x)2ex2.\begin{aligned} & = \lim_{x \to 0} \frac{\frac{1}{1+x} - e^x}{2x} \quad \text{(洛必达法则)} \\ & = \lim_{x \to 0} \frac{-(1+x)^2 - e^x}{2}. \end{aligned} =1.= -1.

例 63 (2003,数一) 求 limx0(cosx)1ln(1+x2)\lim_{x \to 0} (\cos x)^{\frac{1}{\ln(1+x^2)}}.

【解】此极限为 11^{\infty} 型,取指数:(cosx)1ln(1+x2)=e1ln(1+x2)lncosx(\cos x)^{\frac{1}{\ln(1+x^2)}} = e^{\frac{1}{\ln(1+x^2)} \ln \cos x}.

先求极限 limx01ln(1+x2)lncosx\lim_{x \to 0} \frac{1}{\ln(1+x^2)} \ln \cos x,此为 0\infty \cdot 0 型,则

limx01ln(1+x2)lncosx=limx0lncosxln(1+x2)=limx0lncosxx2(等价无穷小替换)=limx01cosx(sinx)2x(洛必达法则)=limx01cosxlimx0sinx2x=12,\begin{aligned} \lim_{x \to 0} \frac{1}{\ln(1+x^2)} \ln \cos x &= \lim_{x \to 0} \frac{\ln \cos x}{\ln(1+x^2)} = \lim_{x \to 0} \frac{\ln \cos x}{x^2} \quad (\text{等价无穷小替换}) \\ & = \lim_{x \to 0} \frac{\frac{1}{\cos x} \cdot (-\sin x)}{2x} \quad (\text{洛必达法则}) \\ & = \lim_{x \to 0} \frac{1}{\cos x} \cdot \lim_{x \to 0} \frac{-\sin x}{2x} = -\frac{1}{2}, \end{aligned}

原式 =limx0e1ln(1+x2)lncosx=e12= \lim_{x \to 0} e^{\frac{1}{\ln(1+x^2)} \ln \cos x} = e^{-\frac{1}{2}}.

【评注】直接用结论,原极限 =elimx0lncosxln(1+x2)=e12= e^{\lim_{x \to 0} \frac{\ln \cos x}{\ln(1+x^2)}} = e^{-\frac{1}{2}}.


例 64limx0+(1x)tanx\lim_{x \to 0^+} \left( \frac{1}{x} \right)^{\tan x}.

【解】此极限为 0\infty^0 型.

  • 原式 =limx0+etanxln1x=elimx0+tanxln1x= \lim_{x \to 0^+} e^{\tan x \ln \frac{1}{x}} = e^{\lim_{x \to 0^+} \tan x \ln \frac{1}{x}},
  • limx0+tanxln1x=limx0+xln1x\lim_{x \to 0^+} \tan x \ln \frac{1}{x} = \lim_{x \to 0^+} x \ln \frac{1}{x} (等价无穷小替换) =limx0+ln1x1x( 型)= \lim_{x \to 0^+} \frac{\ln \frac{1}{x}}{\frac{1}{x}} \quad (\frac{\infty}{\infty} \text{ 型}) 洛必达法则limx0+x(1x2)1x2=0,\text{洛必达法则} \lim_{x \to 0^+} \frac{x \cdot \left(-\frac{1}{x^2}\right)}{-\frac{1}{x^2}} = 0,
  • limx0+(1x)tanx=e0=1\lim_{x \to 0^+} \left(\frac{1}{x}\right)^{\tan x} = e^0 = 1.

【评注】幂指函数 f(x)g(x)f(x)^{g(x)} 求极限,都可如下变形:

limf(x)g(x)=limeg(x)lnf(x)=elimg(x)lnf(x).\lim f(x)^{g(x)} = \lim e^{g(x) \ln f(x)} = e^{\lim g(x) \ln f(x)}.

若为 00,1,00^0, 1^{\infty}, \infty^0 时,limg(x)lnf(x)\lim g(x) \ln f(x)00 \cdot \infty 型.


例 65 (2000,数二)limx0sin6x+xf(x)x3=0\lim_{x \to 0} \frac{\sin 6x + xf(x)}{x^3} = 0,则 limx06+f(x)x2=\lim_{x \to 0} \frac{6 + f(x)}{x^2} = \quad.

(A) 0.

(B) 6.

(C) 36.

(D) \infty.

【解】

方法一
limx0sin6x+xf(x)x3=0\lim_{x \to 0} \frac{\sin 6x + xf(x)}{x^3} = 0

sin6x+xf(x)x3=0+α(x),其中 limx0α(x)=0\frac{\sin 6x + xf(x)}{x^3} = 0 + \alpha(x), \text{其中 } \lim_{x \to 0} \alpha(x) = 0

解得 f(x)=x2α(x)sin6xxf(x) = x^2 \alpha(x) - \frac{\sin 6x}{x}.

limx06+f(x)x2=limx06+x2α(x)sin6xxx2=limx06x+x3α(x)sin6xx3\lim_{x \to 0} \frac{6 + f(x)}{x^2} = \lim_{x \to 0} \frac{6 + x^2 \alpha(x) - \frac{\sin 6x}{x}}{x^2} = \lim_{x \to 0} \frac{6x + x^3 \alpha(x) - \sin 6x}{x^3} =limx0α(x)+limx06xsin6xx3=limx06(1cos6x)3x2(洛必达法则)= \lim_{x \to 0} \alpha(x) + \lim_{x \to 0} \frac{6x - \sin 6x}{x^3} = \lim_{x \to 0} \frac{6(1 - \cos 6x)}{3x^2} \quad \text{(洛必达法则)} =612(6x)2=limx0363x2=36.= 6 \cdot \frac{1}{2} \cdot (6x)^2 = \lim_{x \to 0} \frac{36}{3x^2} = 36.

故应选 (C).

方法二

limx06+f(x)x2=limx06x+xf(x)x3=limx06xsin6x+sin6x+xf(x)x3\lim_{x \to 0} \frac{6 + f(x)}{x^2} = \lim_{x \to 0} \frac{6x + xf(x)}{x^3} = \lim_{x \to 0} \frac{6x - \sin 6x + \sin 6x + xf(x)}{x^3} =limx06xsin6xx3+limx0sin6x+xf(x)x3= \lim_{x \to 0} \frac{6x - \sin 6x}{x^3} + \lim_{x \to 0} \frac{\sin 6x + xf(x)}{x^3} =limx06(1cos6x)3x2=limx0612(6x)23x2=36.= \lim_{x \to 0} \frac{6(1 - \cos 6x)}{3x^2} = \lim_{x \to 0} \frac{6 \cdot \frac{1}{2} \cdot (6x)^2}{3x^2} = 36.

故应选 (C).

方法三
limx0sin6x+xf(x)x3=0\lim_{x \to 0} \frac{\sin 6x + xf(x)}{x^3} = 0,有 limx0sin6x6x+6x+xf(x)x3=0\lim_{x \to 0} \frac{\sin 6x - 6x + 6x + xf(x)}{x^3} = 0,

limx0sin6x6xx3+limx06+f(x)x2=0\lim_{x \to 0} \frac{\sin 6x - 6x}{x^3} + \lim_{x \to 0} \frac{6 + f(x)}{x^2} = 0,所以 limx06+f(x)x2=36\lim_{x \to 0} \frac{6 + f(x)}{x^2} = 36.


5. 利用夹逼准则求极限

夹逼准则 若函数 f(x),g(x),h(x)f(x), g(x), h(x) 满足:

(1) g(x)f(x)h(x)g(x) \leqslant f(x) \leqslant h(x);

(2) limxx0g(x)=limxx0h(x)=A\lim_{x \to x_0} g(x) = \lim_{x \to x_0} h(x) = A,

limxx0f(x)=A\lim_{x \to x_0} f(x) = A.

【注】 条件 (1) 只要在极限过程 xx0x \to x_0 附近成立即可。 换为其他极限过程也有相应的夹逼准则。 对于数列也有类似的夹逼准则。

利用夹逼准则求极限,分两步做:

  • 第一步 放大缩小建立不等式;
  • 第二步 验证不等式两头的极限存在且相等。

例 66 limn2nn!=\lim_{n \to \infty} \frac{2^n}{n!} = ________.

【解】 由于 0<2nn!=2×2××2×21×2××(n1)×n=2×1×23××2n1×2n<4n0 < \frac{2^n}{n!} = \frac{2 \times 2 \times \cdots \times 2 \times 2}{1 \times 2 \times \cdots \times (n-1) \times n} = 2 \times 1 \times \frac{2}{3} \times \cdots \times \frac{2}{n-1} \times \frac{2}{n} < \frac{4}{n},

limn4n=0\lim_{n \to \infty} \frac{4}{n} = 0,所以,由夹逼准则知,limn2nn!=0\lim_{n \to \infty} \frac{2^n}{n!} = 0.


例 67(1995,数三) 求极限 limn(1n2+n+1+2n2+n+2++nn2+n+n)\lim_{n \to \infty} \left(\frac{1}{n^2 + n + 1} + \frac{2}{n^2 + n + 2} + \cdots + \frac{n}{n^2 + n + n}\right).

【解】 由于

1+2++nn2+n+n<1n2+n+1+2n2+n+2++nn2+n+n<1+2++nn2+n+1,\frac{1 + 2 + \cdots + n}{n^2 + n + n} < \frac{1}{n^2 + n + 1} + \frac{2}{n^2 + n + 2} + \cdots + \frac{n}{n^2 + n + n} < \frac{1 + 2 + \cdots + n}{n^2 + n + 1},

limn1+2++nn2+n+n=limn12n(n+1)n2+n+n=12\lim_{n \to \infty} \frac{1 + 2 + \cdots + n}{n^2 + n + n} = \lim_{n \to \infty} \frac{\frac{1}{2}n(n+1)}{n^2 + n + n} = \frac{1}{2},

limn1+2++nn2+n+1=limn12n(n+1)n2+n+1=12\lim_{n \to \infty} \frac{1 + 2 + \cdots + n}{n^2 + n + 1} = \lim_{n \to \infty} \frac{\frac{1}{2}n(n+1)}{n^2 + n + 1} = \frac{1}{2},

所以由夹逼准则知,limn(1n2+n+1+2n2+n+2++nn2+n+n)=12\lim_{n \to \infty} \left(\frac{1}{n^2 + n + 1} + \frac{2}{n^2 + n + 2} + \cdots + \frac{n}{n^2 + n + n}\right) = \frac{1}{2}.


例 68

limna1n+a2n++amnn\lim_{n \to \infty} \sqrt[n]{a_1^n + a_2^n + \cdots + a_m^n},其中 ai>0(i=1,2,,m)a_i > 0 (i = 1, 2, \cdots, m).

【解】max{ai}=a\max \{a_i\} = a,则

anna1n+a2n++amnnmann,\sqrt[n]{a^n} \leqslant \sqrt[n]{a_1^n + a_2^n + \cdots + a_m^n} \leqslant \sqrt[n]{m a^n}, limnann=a,limnmann=a,\lim_{n \to \infty} \sqrt[n]{a^n} = a, \lim_{n \to \infty} \sqrt[n]{m \cdot a^n} = a,

limna1n+a2n++amnn=a.\lim_{n \to \infty} \sqrt[n]{a_1^n + a_2^n + \cdots + a_m^n} = a.

【评注】这是一个常用结论。例如 limn(1+2n+3n+4n+5n)1n=5\lim_{n \to \infty}(1+2^n+3^n+4^n+5^n)^{\frac{1}{n}}=5

例 69x>0x > 0,求极限 limn1+xn+(x22)nn\lim_{n \to \infty}\sqrt[n]{1+x^n+\left(\frac{x^2}{2}\right)^n}

【解】利用上题结论

limn1+xn+(x22)nn=max{1,x,x22}\lim_{n \to \infty}\sqrt[n]{1+x^n+\left(\frac{x^2}{2}\right)^n} = \max\left\{1, x, \frac{x^2}{2}\right\} ={1,0<x<1,x,1x<2,x22,2x.= \begin{cases} 1, & 0 < x < 1, \\ x, & 1 \leqslant x < 2, \\ \frac{x^2}{2}, & 2 \leqslant x. \end{cases}

例 70 limx0+(2x+3x3)1x=\lim_{x \to 0^+}\left(\frac{2^x+3^x}{3}\right)^{\frac{1}{x}}= _______.

【解】当 x>0x > 0 时,0<2x+3x3<23x30 < \frac{2^x+3^x}{3} < \frac{2 \cdot 3^x}{3},于是,当 x>0x > 0

0<(2x+3x3)1x<(23x3)1x=3(23)1x,0 < \left(\frac{2^x+3^x}{3}\right)^{\frac{1}{x}} < \left(\frac{2 \cdot 3^x}{3}\right)^{\frac{1}{x}} = 3 \cdot \left(\frac{2}{3}\right)^{\frac{1}{x}},

limx0+3(23)1x=0\lim_{x \to 0^+}3 \cdot \left(\frac{2}{3}\right)^{\frac{1}{x}} = 0limx0+0=0\lim_{x \to 0^+} 0 = 0,所以由夹逼准则知,limx0+(2x+3x3)1x=0\lim_{x \to 0^+}\left(\frac{2^x+3^x}{3}\right)^{\frac{1}{x}} = 0.

例 71 证明:limx0+x[1x]=1\lim_{x \to 0^+}x\left[\frac{1}{x}\right] = 1[x][x] 表示 xx 的取整函数)。

【证】取整函数 [x][x] 表示不超过 xx 的最大整数,x1<[x]xx - 1 < [x] \leqslant x,从而 1x1<[1x]1x\frac{1}{x} - 1 < \left[\frac{1}{x}\right] \leqslant \frac{1}{x},当 x>0x > 0 时,有

1x=x(1x1)<x[1x]x1x=1,1 - x = x\left(\frac{1}{x} - 1\right) < x\left[\frac{1}{x}\right] \leqslant x \cdot \frac{1}{x} = 1,

limx0+(1x)=1\lim_{x \to 0^+}(1 - x) = 1limx0+1=1\lim_{x \to 0^+}1 = 1, 所以,由夹逼准则知 limx0+x[1x]=1\lim_{x \to 0^+}x\left[\frac{1}{x}\right] = 1.


6. 利用单调有界数列极限准则求极限

准则

  • 单调有界数列必有极限。
  • 单调递增有上界数列必有极限。
  • 单调递减有下界数列必有极限。

【注】利用单调有界准则求极限,往往按如下步骤:

第一步:证明数列单调有界(多用数学归纳法);

第二步:令 limnxn=a\lim_{n \to \infty}x_n = a,对给定的关系式两边求极限,解出 aa

例 72 证明数列 x1=2,x2=2+2,,xn=2+xn1,x_1=\sqrt{2}, x_2=\sqrt{2+\sqrt{2}}, \cdots, x_n=\sqrt{2+x_{n-1}}, \cdots 的极限存在, 并求该极限.

【解】 首先用数学归纳法证明数列 {xn}\{x_n\} 单调递增, 有界.

显然 0<x1<20 < x_1 < 2. 假设 0<xk<20 < x_k < 2, 则有

0<xk+1=2+xk<2+2=2,0 < x_{k+1} = \sqrt{2 + x_k} < \sqrt{2 + 2} = 2,

由数学归纳法知, 0<xn<20 < x_n < 2, 即 {xn}\{x_n\} 有界.

显然 x1<x2x_1 < x_2. 假设 xk1<xkx_{k-1} < x_k, 则有

xk+1=2+xk>2+xk1=xk,x_{k+1} = \sqrt{2 + x_k} > \sqrt{2 + x_{k-1}} = x_k,

由数学归纳法知 {xn}\{x_n\} 单调递增. 从而数列 {xn}\{x_n\} 极限存在.

limnxn=a\lim_{n \to \infty} x_n = a, 对 xn=2+xn1x_n = \sqrt{2 + x_{n-1}} 两边取极限得 a=2+aa = \sqrt{2 + a},

解得 a=2a = 2a=1a = -1. 由极限的保号性知 a0a \geqslant 0, 从而舍去 a=1a = -1.

limnxn=2\lim_{n \to \infty} x_n = 2.


例 73x1>0,xn+1=12(xn+1xn),n=1,2,x_1 > 0, x_{n+1} = \frac{1}{2} \left( x_n + \frac{1}{x_n} \right), n = 1, 2, \cdots. 求极限 limnxn\lim_{n \to \infty} x_n.

【解】 由题设知 xn>0x_n > 0, 且

xn+1=12(xn+1xn)=12[(xn)2+(1xn)2]122xn1xn=1,x_{n+1} = \frac{1}{2} \left( x_n + \frac{1}{x_n} \right) = \frac{1}{2} \left[ \left( \sqrt{x_n} \right)^2 + \left( \frac{1}{\sqrt{x_n}} \right)^2 \right] \geqslant \frac{1}{2} \cdot 2 \sqrt{x_n} \cdot \frac{1}{\sqrt{x_n}} = 1, xn+1xn=12(1xnxn)=121xn2xn0,x_{n+1} - x_n = \frac{1}{2} \left( \frac{1}{x_n} - x_n \right) = \frac{1}{2} \cdot \frac{1 - x_n^2}{x_n} \leqslant 0,

xn+1xn=12(1+1xn2)12(1+11)=1.\frac{x_{n+1}}{x_n} = \frac{1}{2} \left( 1 + \frac{1}{x_n^2} \right) \leqslant \frac{1}{2} \left( 1 + \frac{1}{1} \right) = 1.

则数列 {xn}\{x_n\} 单调减少且下有界, 极限 limnxn\lim_{n \to \infty} x_n 存在, 设 limnxn=a\lim_{n \to \infty} x_n = a.

等式 xn+1=12(xn+1xn)x_{n+1} = \frac{1}{2} \left( x_n + \frac{1}{x_n} \right) 两端取极限得

a=12(a+1a),a = \frac{1}{2} \left( a + \frac{1}{a} \right),

a2=1a^2 = 1, 则 a=1,a=1a = 1, a = -1 (舍去), 故 limnxn=1\lim_{n \to \infty} x_n = 1.


例 74 (1996, 数一)x1=10,xn+1=6+xn(n=1,2,)x_1 = 10, x_{n+1} = \sqrt{6 + x_n} (n = 1, 2, \cdots), 试证: 数列 {xn}\{x_n\} 极限存在, 并求此极限.

【解】 先证 {xn}\{x_n\} 单调递减, 有界.

首先有: x2=6+x1=4x_2 = \sqrt{6 + x_1} = 4, 则 x2<x1x_2 < x_1.

假设 xk<xk1x_k < x_{k-1}, 则 xk+1=6+xk<6+xk1=xkx_{k+1} = \sqrt{6 + x_k} < \sqrt{6 + x_{k-1}} = x_k,

则对所有 nn, 有 xn+1<xnx_{n+1} < x_n, 则 {xn}\{x_n\} 单调递减.

0<xn<x1=100 < x_n < x_1 = 10, 则 {xn}\{x_n\} 有界.

{xn}\{x_n\} 单调有界, 必有极限.

limnxn=a\lim_{n \to \infty} x_n = a, 对 xn+1=6+xnx_{n+1} = \sqrt{6 + x_n} 两边求极限得 a=6+aa = \sqrt{6 + a},

解得 a=3a = 3a=2a = -2 (舍去), 所以 limnxn=3\lim_{n \to \infty} x_n = 3.

  1. 利用无穷小的性质求极限

性质 无穷小和有界量的乘积仍为无穷小.

例75 求极限 limxx23x+52x3+4x2+x1(5+cos3x)\lim _{x \rightarrow \infty} \frac{x^{2}-3 x+5}{2 x^{3}+4 x^{2}+x-1}(5+\cos 3 x).

【解】因 limxx23x+52x3+4x2+x1=0\lim _{x \rightarrow \infty} \frac{x^{2}-3 x+5}{2 x^{3}+4 x^{2}+x-1}=0 (无穷小), 5+cos3x6\left|5+\cos 3 x\right| \leqslant 6(有界),
所以,limxx23x+52x3+4x2+x1(5+cos3x)=0\lim _{x \rightarrow \infty} \frac{x^{2}-3 x+5}{2 x^{3}+4 x^{2}+x-1}(5+\cos 3 x)=0.

8. 利用函数的连续性求极限

(1) 若 f(x)f(x)x=x0x=x_{0} 点连续,则 limxx0f(x)=f(x0)\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right).

(2) 若 f(x),φ(x)f(x), \varphi(x) 为连续函数,则 limxx0f[φ(x)]=f[limxx0φ(x)]\lim _{x \rightarrow x_{0}} f[\varphi(x)]=f[\lim _{x \rightarrow x_{0}} \varphi(x)].

(3) 若 limx+f(x)=A>0,limx+g(x)=B\lim _{x \rightarrow+\infty} f(x)=A>0, \lim _{x \rightarrow+\infty} g(x)=B,则

limx+f(x)g(x)=[limx+f(x)]limx+g(x)=AB.\lim _{x \rightarrow+\infty} f(x)^{g(x)}=[\lim _{x \rightarrow+\infty} f(x)]^{\lim _{x \rightarrow+\infty} g(x)}=A^{B}.

【注】利用 (3) 求极限时,一定要注意条件.

例76 limx0[lg(100+x)2x+arcsinx]12=\lim _{x \rightarrow 0}\left[\frac{\lg (100+x)}{2^{x}+\arcsin x}\right]^{\frac{1}{2}}= ____.

【解】因为 limx0[lg(100+x)2x+arcsinx]12\lim _{x \rightarrow 0}\left[\frac{\lg (100+x)}{2^{x}+\arcsin x}\right]^{\frac{1}{2}} 是初等函数,在 x=0x=0 点连续,
所以,limx0[lg(100+x)2x+arcsinx]12=(lg10020+arcsin0)12=2\lim _{x \rightarrow 0}\left[\frac{\lg (100+x)}{2^{x}+\arcsin x}\right]^{\frac{1}{2}}=\left(\frac{\lg 100}{2^{0}+\arcsin 0}\right)^{\frac{1}{2}}=\sqrt{2}.

例77 \lim _{n \rightarrow \infty}[n[\ln (n+2)-\ln n]$$]= ____.

【解】利用 lnx\ln x 的连续性.

limn[n[ln(n+2)lnn]]=limnln(1+2n)n=lnlimn(1+2n)n=lne2=2.\begin{aligned} \lim _{n \rightarrow \infty}[n[\ln (n+2)-\ln n]]&=\lim _{n \rightarrow \infty} \ln \left(1+\frac{2}{n}\right)^{n} \\ &=\ln \lim _{n \rightarrow \infty}\left(1+\frac{2}{n}\right)^{n}=\ln \mathrm{e}^{2}=2 . \end{aligned}

9. 利用泰勒公式求极限

定理(带皮亚诺余项的泰勒公式)f(x)f(x)x=x0x=x_{0}nn 阶可导,则

f(x)=f(x0)+f(x0)(xx0)+f(x0)2!(xx0)2+f(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2 !}\left(x-x_{0}\right)^{2}+\cdots +f(n)(x0)n!(xx0)n+o(xx0)n+\frac{f^{(n)}\left(x_{0}\right)}{n !}\left(x-x_{0}\right)^{n}+o\left(x-x_{0}\right)^{n}

特别是当 x0=0x_{0}=0 时,

f(x)=f(0)+f(0)x+f(0)2!x2++f(n)(0)n!xn+o(xn)f(x)=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2 !} x^{2}+\cdots+\frac{f^{(n)}(0)}{n !} x^{n}+o\left(x^{n}\right)

几个常用的泰勒公式

(1)ex=1+x+x22!++xnn!+o(xn).(1) \mathrm{e}^{x}=1+x+\frac{x^{2}}{2!}+\cdots+\frac{x^{n}}{n !}+o\left(x^{n}\right).

(2)sinx=xx33!++(1)n1x2n1(2n1)!+o(x2n1).(2) \sin x=x-\frac{x^{3}}{3 !}+\cdots+(-1)^{n-1} \frac{x^{2n-1}}{(2n-1)!}+o\left(x^{2n-1}\right).

(3)cosx=1x22!++(1)nx2n(2n)!+o(x2n).(3) \cos x=1-\frac{x^{2}}{2 !}+\cdots+(-1)^{n} \frac{x^{2 n}}{(2 n) !}+o\left(x^{2 n}\right).

(4)ln(1+x)=xx22++(1)n1xnn+o(xn)(4) \ln (1+x)=x-\frac{x^{2}}{2}+\cdots+(-1)^{n-1} \frac{x^{n}}{n}+o\left(x^{n}\right)

(5)(1+x)a=1+ax+a(a1)2!x2++a(a1)(an+1)n!xn+o(xn).(5)(1+x)^{a}=1+a x+\frac{a(a-1)}{2 !} x^{2}+\cdots+\frac{a(a-1) \cdots(a-n+1)}{n !} x^{n}+o\left(x^{n}\right).


例78 求极限 limx0cosxex22x4\lim _{x \rightarrow 0} \frac{\cos x-\mathrm{e}^{-\frac{x^{2}}{2}}}{x^{4}}.

【解】利用泰勒公式

cosx=112x2+124x4+o(x4),\cos x=1-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}+o\left(x^{4}\right),

ex22=112x2+18x4+o(x4),\mathrm{e}^{-\frac{x^{2}}{2}}=1-\frac{1}{2} x^{2}+\frac{1}{8} x^{4}+o\left(x^{4}\right),

因而 limx0cosxex22x4=limx0112x4+o(x4)x4=112.\lim _{x \rightarrow 0} \frac{\cos x-\mathrm{e}^{-\frac{x^{2}}{2}}}{x^{4}}=\lim _{x \rightarrow 0} \frac{-\frac{1}{12} x^{4}+o\left(x^{4}\right)}{x^{4}}=-\frac{1}{12}.

例79limx0ln(1+x)(ax+bx2)x2=2\lim _{x \rightarrow 0} \frac{\ln (1+x)-(a x+b x^{2})}{x^{2}}=2, 求 a,ba, b.

【解】用泰勒公式 ln(1+x)=xx22+o(x2)\ln (1+x)=x-\frac{x^{2}}{2}+o\left(x^{2}\right), 由 limx0ln(1+x)(ax+bx2)x2=2\lim _{x \rightarrow 0} \frac{\ln (1+x)-(a x+b x^{2})}{x^{2}}=2, 得

limx0(1a)x(12+b)x2+o(x2)x2=2,\lim _{x \rightarrow 0} \frac{(1-a) x-\left(\frac{1}{2}+b\right) x^{2}+o\left(x^{2}\right)}{x^{2}}=2,

所以 1a=0,(12+b)=21-a=0, -\left(\frac{1}{2}+b\right)=2, 解得 a=1,b=52a=1, b=-\frac{5}{2}.

【评注】也可用洛必达法则作答.


例80f(x)f(x) 二阶可导, f(0)=0,f(0)=1,f(0)=2f(0)=0, f^{\prime}(0)=1, f^{\prime \prime}(0)=2, 求极限 limx0f(x)xx2\lim _{x \rightarrow 0} \frac{f(x)-x}{x^{2}}.

【解】用泰勒公式

f(x)=f(0)+f(0)x+12f(0)x2+o(x2)=x+x2+o(x2),f(x)=f(0)+f^{\prime}(0) x+\frac{1}{2} f^{\prime \prime}(0) x^{2}+o\left(x^{2}\right)=x+x^{2}+o\left(x^{2}\right),

limx0f(x)xx2=limx0x2+o(x2)x2=1.\lim _{x \rightarrow 0} \frac{f(x)-x}{x^{2}}=\lim _{x \rightarrow 0} \frac{x^{2}+o\left(x^{2}\right)}{x^{2}}=1.

10. 求极限的其他方法

(1) 利用导数的定义求极限 (见第二章).

Last updated on