Skip to Content
👋 欢迎来到考研学堂! 了解详情
数学基础(通用)NEW高等数学第二章 一元函数微分学一、导数与微分的概念一、导数的概念及几何意义

一、导数的概念及几何意义

1. 导数的概念

定义(导数) 设函数 y=f(x)y = f(x)x0x_0 的某邻域内有定义,如果极限

limΔx0ΔyΔx=limΔx0f(x0+Δx)f(x0)Δx\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}

存在,则称 f(x)f(x) 在点 x0x_0 处可导,并称此极限值为 f(x)f(x) 在点 x0x_0 处的导数,记为 f(x0)f'(x_0)yx=x0y' \bigg|_{x=x_0}dydxx=x0\left. \frac{dy}{dx} \right|_{x=x_0}. 如果上述极限不存在,则称 f(x)f(x) 在点 x0x_0 处不可导.

【注】 常用的导数定义的等价形式有:

f(x0)=limxx0f(x)f(x0)xx0,f(x0)=limh0f(x0+h)f(x0)h.f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}, \quad f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}.

(2) 利用导数的定义求导数:若 limxx0f(x)f(x0)xx0=A\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = A,则 f(x0)=Af'(x_0) = A.

(3) 利用导数的定义可求极限:若已知 f(x)f(x)x0x_0 点可导,则

limx0f()f(x0)x0=f(x0),\lim_{\Box \to x_0} \frac{f(\Box) - f(x_0)}{\Box - x_0} = f'(x_0),

其中 \Box 代表趋于 x0x_0 的变量.

定义(左导数) 设函数 y=f(x)y = f(x) 在点 x0x_0 及其某个左邻域内有定义,若左极限

limΔx0ΔyΔx=limΔx0f(x0+Δx)f(x0)Δx=limxx0f(x)f(x0)xx0\lim_{\Delta x \to 0^-} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0^-} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0}

存在,则称该极限值为 f(x)f(x) 在点 x0x_0 处的左导数,记为 f(x0)f_-^\prime(x_0).

定义(右导数) 设函数 y=f(x)y = f(x) 在点 x0x_0 及其某个右邻域内有定义,若右极限

limΔx0+ΔyΔx=limΔx0+f(x0+Δx)f(x0)Δx=limxx0+f(x)f(x0)xx0\lim_{\Delta x \to 0^+} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0^+} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0}

存在,则称该极限值为 f(x)f(x) 在点 x0x_0 处的右导数,记为 f+(x0)f_+'(x_0)

左导数:f(x0)=limΔx0f(x0+Δx)f(x0)Δx=limh0f(x0+h)f(x0)hf_-'(x_0) = \lim_{\Delta x\to 0^-} \frac{f(x_0+\Delta x)-f(x_0)}{\Delta x} = \lim_{h\to 0^-} \frac{f(x_0+h)-f(x_0)}{h}

=limxx0f(x)f(x0)xx0.=\lim_{x\to x_0^-} \frac{f(x)-f(x_0)}{x-x_0}.

右导数:f+(x0)=limΔx0+f(x0+Δx)f(x0)Δx=limh0+f(x0+h)f(x0)hf_+'(x_0) = \lim_{\Delta x\to 0^+} \frac{f(x_0+\Delta x)-f(x_0)}{\Delta x} = \lim_{h\to 0^+} \frac{f(x_0+h)-f(x_0)}{h}

=limxx0+f(x)f(x0)xx0.=\lim_{x\to x_0^+} \frac{f(x)-f(x_0)}{x-x_0}.

定理 函数 f(x)f(x) 在点 x0x_0 处可导的充分必要条件是它在该点处左导数与右导数都存在且相等.

【注】 (1) 若 f(x)f(x)x0x_0 点的左导数 f(x0)f_-'(x_0)、右导数 f+(x0)f_+'(x_0) 至少有一个不存在或都存在,但不相等,则 f(x)f(x)x0x_0 处不可导,导数 f(x0)f'(x_0) 不存在.

(2) 利用此定理可判断分段函数在分段点处的导数.

定义(区间上可导及导函数) 如果 y=f(x)y=f(x) 在开区间 (a,b)(a,b) 内每一点都可导,则称 f(x)f(x) 在区间 (a,b)(a,b) 内可导. 此时对于 (a,b)(a,b) 内的每一点 xx,都对应一个导数值 f(x)f'(x),常称 f(x)f'(x)f(x)f(x)(a,b)(a,b) 内的导函数,简称为导数. 若 f(x)f(x) 在区间 (a,b)(a,b) 内可导,且 f+(a)f_+'(a)f(b)f_-'(b) 都存在,则称 f(x)f(x) 在区间 [a,b][a,b] 上可导.

导函数:f(x)=limΔx0f(x+Δx)f(x)Δx.f'(x) = \lim_{\Delta x\to 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}.

【注】 f(x)f(x)x0x_0 点的导数 f(x0)f'(x_0),即为导函数 f(x)f'(x) 在点 x0x_0 处的函数值. 即 f(x0)=f(x)x=x0f'(x_0) = f'(x)\bigg|_{x=x_0}.


例 1f(x)=(x2)(x+1)2(x1)3f(x) = (x-2)\sqrt[3]{(x+1)^2(x-1)},则 f(2)=f'(2)= ______.

【解】 由导数定义知

f(2)=limx2f(x)f(2)x2=limx2(x2)(x+1)2(x1)3x2f'(2) = \lim_{x\to 2} \frac{f(x)-f(2)}{x-2} = \lim_{x\to 2} \frac{(x-2)\sqrt[3]{(x+1)^2(x-1)}}{x-2} =limx2(x+1)2(x1)3=93.= \lim_{x\to 2} \sqrt[3]{(x+1)^2(x-1)} = \sqrt[3]{9}.

【评注】 求一点的导数,用导数定义较简单.


例 2 (2012,数三)设函数 f(x)=(ex1)(e2x2)(enxn)f(x)=(e^x-1)(e^{2x}-2)\cdots(e^{nx}-n),则 f(0)=f'(0)=

(A) (1)π1(n1)!(-1)^{\pi-1}(n-1)!.

(B) (1)π(n1)!(-1)^\pi(n-1)!.

(C) (1)π1n!(-1)^{\pi-1}n!.

(D) (1)πn!(-1)^\pi n!.

【解】 由导数定义及 f(0)=0f(0)=0,得

f(0)=limx0f(x)f(0)x0=limx0(ex1)(e2x2)(eπxn)xf'(0) = \lim_{x\to 0} \frac{f(x)-f(0)}{x-0} = \lim_{x\to 0} \frac{(e^x-1)(e^{2x}-2)\cdots(e^{\pi x}-n)}{x} =limx0x(e2x2)(eπxn)x=limx0(e2x2)(eπxn)= \lim_{x\to 0} \frac{x(e^{2x}-2)\cdots(e^{\pi x}-n)}{x} = \lim_{x\to 0}(e^{2x}-2)\cdots(e^{\pi x}-n) =(1)(2)(1n)=(1)π1(n1)!.= (-1)(-2)\cdots(1-n) = (-1)^{\pi-1}(n-1)!.

故应选 (A).


例 3f(x)={1ex2x,x0,0,x=0,f(x) = \begin{cases} \frac{1-e^{-x^2}}{x}, & x \neq 0, \\ 0, & x = 0, \end{cases}f(0)=f'(0) = ______.

【解】

f(0)=limx0f(x)f(0)x0=limx01ex2x0x=limx01ex2x2=limx0x2=1.f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{\frac{1-e^{-x^2}}{x} - 0}{x} = \lim_{x \to 0} \frac{1-e^{-x^2}}{x^2} = \lim_{x \to 0} x^2 = 1.

例 4f(x)={2x1+ex,x0,x2sin1x,x>0,f(x) = \begin{cases} \frac{2x}{1+e^x}, & x \leq 0, \\ x^2 \sin \frac{1}{x}, & x > 0, \end{cases} 讨论 f(x)f(x)x=0x = 0 处的可导性.

【解】
f(x)f(x) 为分段函数,x=0x = 0 为其分段点,故应先求左、右导数.

f(0)=limx0f(x)f(0)x0=limx02x1+exx=limx021+ex=1,f'_-(0) = \lim_{x \to 0^-} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^-} \frac{\frac{2x}{1+e^x}}{x} = \lim_{x \to 0^-} \frac{2}{1+e^x} = 1, f+(0)=limx0+f(x)f(0)x0=limx0+x2sin1xx=limx0+xsin1x=0,f'_+(0) = \lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^+} \frac{x^2 \sin \frac{1}{x}}{x} = \lim_{x \to 0^+} x \sin \frac{1}{x} = 0,

f(0)f+(0)f'_-(0) \neq f'_+(0),所以 f(x)f(x)x=0x = 0 处不可导.


例 5f(x)={x,x<0,xex,x0,f(x) = \begin{cases} x, & x < 0, \\ x e^x, & x \geq 0, \end{cases}f(x)f(x)x=0x = 0

(A) 可导,且 f(0)=0f'(0) = 0.

(B) 可导,且 f(0)=1f'(0) = 1.

(C) 可导,且 f(0)=2f'(0) = 2.

(D) 不可导.

【解】

f(0)=limx0f(x)f(0)x0=limx0xx=1,f'_-(0) = \lim_{x \to 0^-} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^-} \frac{x}{x} = 1, f+(0)=limx0+f(x)f(0)x0=limx0+xexx=limx0+ex=1,f'_+(0) = \lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^+} \frac{x e^x}{x} = \lim_{x \to 0^+} e^x = 1,

由于 f(0)=f+(0)=1f'_-(0) = f'_+(0) = 1,则 f(x)f(x)x=0x = 0 点可导,且 f(0)=1f'(0) = 1,故应选(B).


例 6 设函数 y=f(x)y = f(x)x=0x = 0 点连续,且 limx0f(x)+2x=3\lim_{x \to 0} \frac{f(x) + 2}{x} = 3,问函数 f(x)f(x)x=0x = 0 点是否可导?若可导,求 f(0)f'(0).

【解】
limx0f(x)+2x=3\lim_{x \to 0} \frac{f(x) + 2}{x} = 3limx0x=0\lim_{x \to 0} x = 0limx0[f(x)+2]=0\lim_{x \to 0} [f(x) + 2] = 0,又由 f(x)f(x)x=0x = 0 点连续得 limx0[f(x)+2]=f(0)+2\lim_{x \to 0} [f(x) + 2] = f(0) + 2,则 f(0)+2=0f(0) + 2 = 0,即 f(0)=2f(0) = -2.

于是有 f(0)=limx0f(x)f(0)x0=limx0f(x)+2x=3f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{f(x) + 2}{x} = 3,所以 f(x)f(x)x=0x = 0 点可导,且 f(0)=3f'(0) = 3.


例 7 讨论函数 f(x)={xsin1x,x0,0,x=0f(x) = \begin{cases} x \sin \frac{1}{x}, & x \neq 0, \\ 0, & x = 0 \end{cases}x=0x = 0 处的连续性和可导性.

【解】

limx0f(x)=limx0xsin1x=0=f(0),\lim_{x \to 0} f(x) = \lim_{x \to 0} x \sin \frac{1}{x} = 0 = f(0),

f(x)f(x)x=0x = 0 处连续.

limΔx0ΔyΔx=limΔx0f(0+Δx)f(0)Δx=limΔx0Δxsin1ΔxΔx=limΔx0sin1Δx\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(0 + \Delta x) - f(0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta x \sin \frac{1}{\Delta x}}{\Delta x} = \lim_{\Delta x \to 0} \sin \frac{1}{\Delta x}, 极限不存在,
所以 f(x)f(x)x=0x=0 处不可导.

【评注】一般地, 可考虑 f(x)={xαsin1x,x0,0,x=0f(x)= \begin{cases} x^{\alpha} \sin \frac{1}{x}, & x \neq 0, \\ 0, & x=0 \end{cases}x=0x=0 处的连续性和可导性.
α>0\alpha > 0 时连续, α>1\alpha > 1 时可导.


例 8 (2018, 数一、二、三) 下列函数中, 在 x=0x=0 处不可导的是

(A) f(x)=xsinxf(x)= |x| \sin |x|.

(B) f(x)=xsinxf(x)= |x| \sin \sqrt{|x|}.

(C) f(x)=cosxf(x)= \cos |x|.

(D) f(x)=cosxf(x)= \cos \sqrt{|x|}.

【解】由导数定义知, 对于选项 (D)

f(0)=limx0cosx1x=limx012(x)2x=limx012xx,f'(0) = \lim_{x \to 0} \frac{\cos \sqrt{|x|} -1}{x} = \lim_{x \to 0} \frac{-\frac{1}{2} (\sqrt{|x|})^{2}}{x} = \lim_{x \to 0} \frac{-\frac{1}{2}|x|}{x},

该极限不存在, 则 f(x)=cosxf(x)=\cos \sqrt{|x|}x=0x=0 处不可导, 故应选 (D).

而对于选项 (A)(B)(C) 有

f(0)=limx0xsinx0x0=limx0xsinxx=limx0x2x=limx0x=0,f'(0) = \lim_{x \to 0} \frac{|x| \sin |x| - 0}{x-0} = \lim_{x \to 0} \frac{|x| \sin |x|}{x} = \lim_{x \to 0} \frac{|x|^{2}}{x} = \lim_{x \to 0} |x| = 0, f(0)=limx0xsinx0x0=limx0xsinxx=limx0xxx=0,f'(0) = \lim_{x \to 0} \frac{|x| \sin \sqrt{|x|} - 0}{x-0} = \lim_{x \to 0} \frac{|x| \sin \sqrt{|x|}}{x} = \lim_{x \to 0} \frac{|x| \sqrt{|x|}}{x} = 0, f(0)=limx0cosx1x0=limx0cosx1x=limx012x2x=limx0(12x)=0,f'(0) = \lim_{x \to 0} \frac{\cos |x| - 1}{x-0} = \lim_{x \to 0} \frac{\cos |x| -1}{x} = \lim_{x \to 0} \frac{-\frac{1}{2}|x|^{2}}{x} = \lim_{x \to 0} \left(-\frac{1}{2} x\right) = 0,

所以对于 (A)(B)(C), f(x)f(x)x=0x=0 点都可导. 故应选 (D).


例 9 (1994, 数三) 设

f(x)={23x3,x1,x2,x>1,f(x) = \begin{cases} \frac{2}{3} x^{3}, & x \leqslant 1, \\ x^{2}, & x > 1, \end{cases}

f(x)f(x)x=1x=1 处的

(A) 左、右导数都存在.

(B) 左导数存在但右导数不存在.

(C) 左导数不存在但右导数存在.

(D) 左、右导数都不存在.

【解】

f(1)=limx123x323x1=23limx1(x1)(x2+x+1)x1=2,f_{-}^{\prime}(1) = \lim_{x \to 1^{-}} \frac{\frac{2}{3}x^{3} - \frac{2}{3}}{x-1} = \frac{2}{3} \lim_{x \to 1^{-}} \frac{(x-1)(x^{2} + x +1)}{x-1} = 2, f+(1)=limx1+x223x1=,f_{+}^{\prime}(1) = \lim_{x \to 1^{+}} \frac{x^{2} - \frac{2}{3}}{x-1} = \infty,

则左导数存在但右导数不存在. 故应选 (B).


例 10 (2006, 数三、四) 设 f(x)f(x)x=0x=0 处连续, 且 limh0f(h2)h2=1\lim_{h \to 0} \frac{f(h^{2})}{h^{2}} = 1, 则

(A) f(0)=0f(0)=0f(0)f_{-}^{\prime}(0) 存在.

(B) f(0)=1f(0)=1f(0)f_{-}^{\prime}(0) 存在.

(C) f(0)=0f(0)=0f+(0)f_{+}^{\prime}(0) 存在.

(D) f(0)=1f(0)=1f+(0)f_{+}^{\prime}(0) 存在.

【解析】

例 11
(2003,数四)设函数 f(x)=x31φ(x)f(x) = |x^3 - 1| \cdot \varphi(x),其中 φ(x)\varphi(x)x=1x = 1 处连续,则 φ(1)=0\varphi(1) = 0f(x)f(x)x=1x = 1 处可导的

(A) 充分必要条件.

(B) 必要但非充分条件.

(C) 充分但非必要条件.

(D) 既非充分也非必要条件.

【解】

f(1)=limx1f(x)f(1)x1=limx1x31φ(x)0x1=limx1(1x3)φ(x)x1f_-'(1) = \lim_{x \to 1^-} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1^-} \frac{|x^3 - 1| \cdot \varphi(x) - 0}{x - 1} = \lim_{x \to 1^-} \frac{(1 - x^3) \varphi(x)}{x - 1} =limx11x3x1limx1φ(x)=3φ(1),= \lim_{x \to 1^-} \frac{1 - x^3}{x - 1} \cdot \lim_{x \to 1^-} \varphi(x) = -3 \varphi(1), f+(1)=limx1+f(x)f(1)x1=limx1+(x31)φ(x)x1=limx1+x31x1limx1+φ(x)=3φ(1),f_+'(1) = \lim_{x \to 1^+} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1^+} \frac{(x^3 - 1) \varphi(x)}{x - 1} = \lim_{x \to 1^+} \frac{x^3 - 1}{x - 1} \lim_{x \to 1^+} \varphi(x) = 3 \varphi(1),

f(x)f(x)x=1x = 1 点可导的充要条件是 f(1)=f+(1)f_-'(1) = f_+'(1),即 3φ(1)=3φ(1)-3 \varphi(1) = 3 \varphi(1),即 φ(1)=0\varphi(1) = 0。故应选 (A).


例 12
(1989,数二)设 f(x)f(x)x=ax = a 的某个邻域内有定义,则 f(x)f(x)x=ax = a 处可导的一个充分条件是

(A) limhh[f(a+1h)f(a)]\lim_{h \to \infty} h \left[ f\left(a + \frac{1}{h}\right) - f(a)\right] 存在.

(B) limh0f(a+2h)f(a+h)h\lim_{h \to 0} \frac{f(a + 2h) - f(a + h)}{h} 存在.

(C) limh0f(a+h)f(ah)2h\lim_{h \to 0} \frac{f(a + h) - f(a - h)}{2h} 存在.

(D) limh0f(a)f(ah)h\lim_{h \to 0} \frac{f(a) - f(a - h)}{h} 存在.

【解】
(A) 选项不是充分条件,对于 (A),令 1h=Δx\frac{1}{h} = \Delta x,则 Δx0+\Delta x \to 0^+,只能得到

limΔx0+f(a+Δx)f(a)Δx\lim_{\Delta x \to 0^+} \frac{f(a + \Delta x) - f(a)}{\Delta x}

存在,推不出

limΔx0f(a+Δx)f(a)Δx\lim_{\Delta x \to 0} \frac{f(a + \Delta x) - f(a)}{\Delta x}

存在,即推不出 f(a)f'(a) 存在。

而 (B)(C) 选项也不是充分条件,举例说明:令 f(x)={(xa)2,xa,1,x=a,f(x) = \begin{cases} (x - a)^2, & x \neq a, \\ 1, & x = a, \end{cases}

limh0f(a+2h)f(a+h)h=limh04h2h2h=0\lim_{h \to 0} \frac{f(a + 2h) - f(a + h)}{h} = \lim_{h \to 0} \frac{4h^2 - h^2}{h} = 0 limh0f(a+h)f(ah)2h=limh0h2(h)22h=0\lim_{h \to 0} \frac{f(a + h) - f(a - h)}{2h} = \lim_{h \to 0} \frac{h^2 - (-h)^2}{2h} = 0

的存在,但

limΔx0f(a+Δx)f(a)Δx=limΔx0(Δx)21Δx=\lim_{\Delta x \to 0} \frac{f(a + \Delta x) - f(a)}{\Delta x} = \lim_{\Delta x \to 0} \frac{(\Delta x)^2 - 1}{\Delta x} = \infty

f(x)f(x)x=ax = a 点不可导。

由排除法知 (D) 是充分条件,事实上,令 h=Δx-h = \Delta x,则

limh0f(a)f(ah)h=limΔx0f(a+Δx)f(a)Δx,\lim_{h \to 0} \frac{f(a) - f(a - h)}{h} = \lim_{\Delta x \to 0} \frac{f(a + \Delta x) - f(a)}{\Delta x},

所以由 (D) 可推出 f(x)f(x)x=ax = a 处可导。故应选 (D).


例 13
f(x)f(x)x0x_0 处可导,求下列极限

(1)limΔx0f(x0+3Δx)f(x0)Δx;(2)limΔx0f(x0)f(x02Δx)Δx(3)limh0f(x0+2h)f(x05h)h;(4)limn[f(x01n)f(x0+12n)].\begin{aligned} (1) & \lim_{\Delta x \to 0} \frac{f(x_{0} + 3\Delta x) - f(x_{0})}{\Delta x}; \\ (2) & \lim_{\Delta x \to 0} \frac{f(x_{0}) - f(x_{0} - 2\Delta x)}{\Delta x} \\ (3) & \lim_{h \to 0} \frac{f(x_{0} + 2h) - f(x_{0} - 5h)}{h}; \qquad \\ (4) & \lim_{n \to \infty} \left[ f\left(x_{0} - \frac{1}{n}\right) - f\left(x_{0} + \frac{1}{2n}\right) \right]. \end{aligned}

【解】 由导数的定义知

(1) limΔx0f(x0+3Δx)f(x0)Δx=limΔx0f(x0+3Δx)f(x0)3Δx3=3limΔx0f(x0+3Δx)f(x0)3Δx=3f(x0).\begin{aligned} \lim_{\Delta x \to 0} \frac{f(x_{0} + 3\Delta x) - f(x_{0})}{\Delta x} & = \lim_{\Delta x \to 0} \frac{f(x_{0} + 3\Delta x) - f(x_{0})}{3\Delta x} \cdot 3 \\ & = 3 \lim_{\Delta x \to 0} \frac{f(x_{0} + 3\Delta x) - f(x_{0})}{3\Delta x} = 3f'(x_{0}). \end{aligned}


(2) limΔx0f(x0)f(x02Δx)Δx=2limΔx0f(x02Δx)f(x0)2Δx=2f(x0).\begin{aligned} \lim_{\Delta x \to 0} \frac{f(x_{0}) - f(x_{0} - 2\Delta x)}{\Delta x} & = 2 \lim_{\Delta x \to 0} \frac{f(x_{0} - 2\Delta x) - f(x_{0})}{-2\Delta x} = 2f'(x_{0}). \end{aligned}


(3) limh0f(x0+2h)f(x05h)h=limh0[f(x0+2h)f(x0)][f(x05h)f(x0)]h=limh0f(x0+2h)f(x0)hlimh0f(x05h)f(x0)h=2limh0f(x0+2h)f(x0)2h+5limh0f(x05h)f(x0)5h=2f(x0)+5f(x0)=7f(x0).\begin{aligned} \lim_{h \to 0} \frac{f(x_{0} + 2h) - f(x_{0} - 5h)}{h} & = \lim_{h \to 0} \frac{\left[f(x_{0} + 2h) - f(x_{0})\right] - \left[f(x_{0} - 5h) - f(x_{0})\right]}{h} \\ & = \lim_{h \to 0} \frac{f(x_{0} + 2h) - f(x_{0})}{h} - \lim_{h \to 0} \frac{f(x_{0} - 5h) - f(x_{0})}{h} \\ & = 2 \lim_{h \to 0} \frac{f(x_{0} + 2h) - f(x_{0})}{2h} + 5 \lim_{h \to 0} \frac{f(x_{0} - 5h) - f(x_{0})}{-5h} \\ & = 2f'(x_{0}) + 5f'(x_{0}) = 7f'(x_{0}). \end{aligned}


(4) limn[f(x01n)f(x0+12n)]=limn[f(x01n)f(x0)+f(x0)f(x0+12n)]=limnf(x01n)f(x0)1nlimnf(x0+12n)f(x0)1n=limnf(x01n)f(x0)1n12limnf(x0+12n)f(x0)12n=f(x0)12f(x0)=32f(x0).\begin{aligned} & \lim_{n \to \infty} \left[ f\left(x_{0} - \frac{1}{n}\right) - f\left(x_{0} + \frac{1}{2n}\right) \right] \\ & = \lim_{n \to \infty} \left[ f\left(x_{0} - \frac{1}{n}\right) - f(x_{0}) + f(x_{0}) - f\left(x_{0} + \frac{1}{2n}\right) \right] \\ & = \lim_{n \to \infty} \frac{f\left(x_{0} - \frac{1}{n}\right) - f(x_{0})}{\frac{1}{n}} - \lim_{n \to \infty} \frac{f\left(x_{0} + \frac{1}{2n}\right) - f(x_{0})}{\frac{1}{n}} \\ & = -\lim_{n \to \infty} \frac{f\left(x_{0} - \frac{1}{n}\right) - f(x_{0})}{-\frac{1}{n}} - \frac{1}{2} \lim_{n \to \infty} \frac{f\left(x_{0} + \frac{1}{2n}\right) - f(x_{0})}{\frac{1}{2n}} \\ & = -f'(x_{0}) - \frac{1}{2} f'(x_{0}) = -\frac{3}{2} f'(x_{0}). \end{aligned}

【评注】 利用导数的定义可以求极限:若 f(x)f(x)x0x_0 点可导,则有 limΔx0f(x0+aΔx)f(x0)Δx=af(x0),limΔx0f(x0)f(x0+aΔx)Δx=af(x0),limΔx0f(x0+aΔx)f(x0+bΔx)Δx=(ab)f(x0),\begin{aligned} & \lim_{\Delta x \to 0} \frac{f(x_{0} + a\Delta x) - f(x_{0})}{\Delta x} = a f'(x_{0}), \\ & \lim_{\Delta x \to 0} \frac{f(x_{0}) - f(x_{0} + a\Delta x)}{\Delta x} = -a f'(x_{0}), \\ & \lim_{\Delta x \to 0} \frac{f(x_{0} + a\Delta x) - f(x_{0} + b\Delta x)}{\Delta x} = (a - b) f'(x_{0}), \end{aligned} 其中 a,ba, b 为常数.

limx0f()f(x0)x0=f(x0),\lim_{\square \to x_{0}} \frac{f(\square) - f(x_{0})}{\square - x_{0}} = f'(x_{0}), 其中 \square 可为函数或数列表达式,且 x0\square \to x_{0}.


例 14 (1994,数三)已知 f(x0)=1f'(x_{0}) = -1,则 limx0xf(x02x)f(x0x)=\lim_{x \to 0} \frac{x}{f(x_{0} - 2x) - f(x_{0} - x)} = \quad.

【解】 根据导数的定义求极限 limx0f(x02x)f(x0x)x=limx0f(x02x)f(x0)+f(x0)f(x0x)x\lim_{x \to 0} \frac{f(x_{0} - 2x) - f(x_{0} - x)}{x} = \lim_{x \to 0} \frac{f(x_{0} - 2x) - f(x_{0}) + f(x_{0}) - f(x_{0} - x)}{x}

=limx0f(x02x)f(x0)xlimx0f(x0x)f(x0)x=2limx0f(x02x)f(x0)2x+limx0f(x0x)f(x0)x=2f(x0)+f(x0)=f(x0)=1,\begin{aligned} &= \lim_{x \to 0} \frac{f(x_0 - 2x) - f(x_0)}{x} - \lim_{x \to 0} \frac{f(x_0 - x) - f(x_0)}{x} \\ &= -2 \lim_{x \to 0} \frac{f(x_0 - 2x) - f(x_0)}{-2x} + \lim_{x \to 0} \frac{f(x_0 - x) - f(x_0)}{-x} \\ &= -2f'(x_0) + f'(x_0) = -f'(x_0) = 1, \end{aligned}

limx0xf(x02x)f(x0x)=1\lim_{x \to 0} \frac{x}{f(x_0 - 2x) - f(x_0 - x)} = 1,故应填 1.


例 15 (2011,数二、三)设函数 f(x)f(x)x=0x=0 处可导,且 f(0)=0f(0)=0,则 limx0x2f(x)2f(x3)x3\lim_{x \to 0} \frac{x^2 f(x) - 2f(x^3)}{x^3}

(A)2f(0)-2f'(0).

(B)f(0)-f'(0).

(C)f(0)f'(0).

(D)00.

【解】 limx0x2f(x)2f(x3)x3=limx0f(x)x2limx0f(x3)x3=limx0f(x)f(0)x02limx0f(x3)f(0)x30=f(0)2f(0)=f(0).\begin{aligned} \lim_{x \to 0} \frac{x^2 f(x) - 2f(x^3)}{x^3} &= \lim_{x \to 0} \frac{f(x)}{x} - 2 \lim_{x \to 0} \frac{f(x^3)}{x^3} \\ &= \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} - 2 \lim_{x \to 0} \frac{f(x^3) - f(0)}{x^3 - 0} \\ &= f'(0) - 2f'(0) = -f'(0). \end{aligned}

故应选(B).


例 16 (2013,数三)设曲线 y=f(x)y = f(x)y=x2xy = x^2 - x 在点 (1,0)(1, 0) 处有公共切线,则 limnf(nn+2)=\lim_{n \to \infty} f\left(\frac{n}{n+2}\right) = \quad.

【解】 由导数的几何意义知 f(1)=(x2x)x=1=(2x1)x=1=1f'(1) = (x^2 - x)' \big|_{x=1} = (2x - 1) \big|_{x=1} = 1,且 f(1)=0f(1) = 0.

limnf(nn+2)=limnf(nn+2)f(1)1n=limnf(nn+2)f(1)nn+21nn+211n(导数定义)=limnf(nn+2)f(1)nn+21limnnn+211n=f(1)(2)=2f(1)=2.\begin{aligned} \lim_{n \to \infty} f\left(\frac{n}{n+2}\right) &= \lim_{n \to \infty} \frac{f\left(\frac{n}{n+2}\right) - f(1)}{\frac{1}{n}} \\ &= \lim_{n \to \infty} \frac{f\left(\frac{n}{n+2}\right) - f(1)}{\frac{n}{n+2} - 1} \cdot \frac{\frac{n}{n+2} - 1}{\frac{1}{n}} \quad (导数定义) \\ &= \lim_{n \to \infty} \frac{f\left(\frac{n}{n+2}\right) - f(1)}{\frac{n}{n+2} - 1} \cdot \lim_{n \to \infty} \frac{\frac{n}{n+2} - 1}{\frac{1}{n}} \\ &= f'(1) \cdot (-2) = -2f'(1) = -2. \end{aligned}

【评注】 若曲线 y=f(x)y = f(x) 与曲线 y=g(x)y = g(x)(x0,y0)(x_0, y_0) 处相切,则 f(x0)=g(x0)=y0f(x_0) = g(x_0) = y_0,且 f(x0)=g(x0)f'(x_0) = g'(x_0).


例 17f(x)f(x)x=1x=1 处可导,且 f(1)=1f'(1) = 1,求 limx1f(x)f(1)x20251\lim_{x \to 1} \frac{f(x) - f(1)}{x^{2025} - 1}.

【解】 limx1f(x)f(1)x20251=limx1f(x)f(1)(x1)(x2024+x2023++x+1)=f(1)2025=12025.\begin{aligned} \lim_{x \to 1} \frac{f(x) - f(1)}{x^{2025} - 1} &= \lim_{x \to 1} \frac{f(x) - f(1)}{(x-1)(x^{2024} + x^{2023} + \cdots + x + 1)} \\ &= \frac{f'(1)}{2025} = \frac{1}{2025}. \end{aligned}


例 18 已知 f(x)f(x)x=0x=0 点可导,则 limx0f(4x)f(2x)x=\lim_{x \to 0} \frac{f(4x) - f(-2x)}{x} = \quad.

【解】 原式 =limx0f(4x)f(0)+f(0)f(2x)x= \lim_{x \to 0} \frac{f(4x) - f(0) + f(0) - f(-2x)}{x}

=limx0f(4x)f(0)xlimx0f(2x)f(0)x= \lim_{x \to 0} \frac{f(4x) - f(0)}{x} - \lim_{x \to 0} \frac{f(-2x) - f(0)}{x}

limx0f(4x)f(0)4x+2limx0f(2x)f(0)2x=4f(0)+2f(0)=6f(0).\begin{aligned} & \lim_{x \to 0} \frac{f(4x) - f(0)}{4x} + 2 \lim_{x \to 0} \frac{f(-2x) - f(0)}{-2x} \\ & = 4 f'(0) + 2 f'(0) = 6 f'(0). \end{aligned}

例 19f(6)f'(6) 存在,且 limx2f(2+2x)f(6)x24=5\lim_{x \to 2} \frac{f(2+2x) - f(6)}{x^2 - 4} = 5,则 f(6)=f'(6) = \underline{\qquad\qquad}.

【解】因 f(6)f'(6) 存在,由导数定义知

limx2f(2+2x)f(6)(2+2x)6=limx2f(2+2x)f(6)2(x2)=f(6),\lim_{x \to 2} \frac{f(2+2x) - f(6)}{(2+2x) - 6} = \lim_{x \to 2} \frac{f(2+2x) - f(6)}{2(x-2)} = f'(6),

limx2f(2+2x)f(6)x24=limx2f(2+2x)f(6)2(x2)2x+2\lim_{x \to 2} \frac{f(2+2x) - f(6)}{x^2 - 4} = \lim_{x \to 2} \frac{f(2+2x) - f(6)}{2(x-2)} \cdot \frac{2}{x+2} =limx2f(2+2x)f(6)2(x2)limx22x+2= \lim_{x \to 2} \frac{f(2+2x) - f(6)}{2(x-2)} \cdot \lim_{x \to 2} \frac{2}{x+2} =f(6)12=12f(6).= f'(6) \cdot \frac{1}{2} = \frac{1}{2} f'(6).

由题意知 12f(6)=5\frac{1}{2} f'(6) = 5,则 f(6)=10f'(6) = 10.


2. 导数的几何意义

导数 f(x0)f'(x_0) 在几何上表示曲线 y=f(x)y = f(x) 在点 (x0,f(x0))(x_0, f(x_0)) 处切线的斜率.

如果函数 f(x)f(x) 在点 x0x_0 处可导,则曲线 y=f(x)y = f(x) 在点 (x0,f(x0))(x_0, f(x_0)) 处必有切线,其切线方程为

yf(x0)=f(x0)(xx0).y - f(x_0) = f'(x_0)(x - x_0).

如果 f(x0)0f'(x_0) \neq 0,则此曲线 y=f(x)y = f(x) 在点 (x0,f(x0))(x_0, f(x_0)) 处的法线方程为

yf(x0)=1f(x0)(xx0).y - f(x_0) = -\frac{1}{f'(x_0)}(x - x_0).

如果 f(x0)=0f'(x_0) = 0,则曲线 y=f(x)y = f(x) 在点 (x0,f(x0))(x_0, f(x_0)) 处的切线方程为 y=f(x0)y = f(x_0),即曲线在点 (x0,f(x0))(x_0, f(x_0)) 处有水平切线,而法线方程为 x=x0x = x_0.

【注】 (1) 若函数 f(x)f(x)x=x0x = x_0 处可导,则曲线 y=f(x)y = f(x) 在点 (x0,f(x0))(x_0, f(x_0)) 处有切线,反之则不然. 例如曲线 y=x13y = x^{\frac{1}{3}} 在点 (0,0)(0, 0) 处有切线 x=0(yx = 0 (y 轴),但函数 f(x)=x13f(x) = x^{\frac{1}{3}}x=0x = 0 处不可导 (f(0)=f'(0) = \infty).

(2) 若函数 f(x)f(x)x0x_0 处连续,且 f(x0)=f'(x_0) = \infty,则曲线 y=f(x)y = f(x) 在点 (x0,f(x0))(x_0, f(x_0)) 处有切线,切线方程为 x=x0x = x_0.


例 20 (2004,数一) 曲线 y=lnxy = \ln x 上与直线 x+y=1x + y = 1 垂直的切线方程为 \underline{\qquad\qquad}.

【解】设切点为 (x0,lnx0)(x_0, \ln x_0),因切线垂直于直线 x+y=1x + y = 1,则切线斜率 k=1k = 1,又

k=(lnx)x=x0=1x0,k = (\ln x)' \bigg|_{x = x_0} = \frac{1}{x_0},

1x0=1\frac{1}{x_0} = 1,即 x0=1x_0 = 1,于是切点为 (1,0)(1, 0),则切线方程为 y0=x1y - 0 = x - 1,即 y=x1y = x - 1. 故应填 y=x1y = x - 1.


例 21 (2010,数二) 曲线 y=x2y = x^2 与曲线 y=alnx(a0)y = a \ln x (a \neq 0) 相切,则 a=a =

(A) 4e4e.

(B) 3e3e.

(C) 2e2e.

(D) ee.

设切点为 (x0,y0)(x_{0}, y_{0}),由题意知

y0=x022x0=ax0}\left.\begin{array}{l} y_{0}=x_{0}^{2} \\ 2 x_{0}=\frac{a}{x_{0}} \end{array}\right\} 解得 x0=ey0=e}\left.\begin{array}{l} x_{0}=\sqrt{e} \\ y_{0}=e \end{array}\right\}, 故应选 (C).


例 22 (2008,数四)设 f(x)f(x) 连续,且 limx0f(x)x=2\lim _{x \rightarrow 0} \frac{f(x)}{x}=2,则曲线 y=f(x)y=f(x) 上对应 x=0x=0 处的切线方程是

【解】由 limx0f(x)x=2\lim _{x \rightarrow 0} \frac{f(x)}{x}=2f(x)f(x) 连续得: limx0f(x)=f(0)=0\lim _{x \rightarrow 0} f(x)=f(0)=0,则切点为 (0,0)(0,0)

又切线斜率为 k=f(0)=limx0f(x)f(0)x0=limx0f(x)xk=f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{f(x)}{x},所以, 切线方程为 y0=2(x0)y-0=2(x-0),即 y=2xy=2x。故应填 y=2xy=2x


例 23 求曲线 y=ex+x2+1y=e^{x}+x^{2}+1 在点 (0,2)(0,2) 处的切线方程和法线方程。

【解】由导数的几何意义知,y=ex+x2+1y=e^{x}+x^{2}+1 在点 (0,2)(0,2) 的切线斜率为

k=yx=0=(ex+x2+1)x=0=(ex+2x)x=0=1k=y^{\prime}\left.\right|_{x=0} =\left(e^{x}+x^{2}+1\right)^{\prime}\left.\right|_{x=0}=\left(e^{x}+2x\right)\left.\right|_{x=0}=1

则切线方程为 y2=1(x0)y-2=1(x-0),即 y=x+2y=x+2,法线方程为 y2=1(x0)y-2=-1(x-0),即 y=x+2y=-x+2


例 24 曲线 y=x33xy=x^{3}-3x 上的切线平行于 xx 轴的点为

【解】设切点为 (x0,x033x0)(x_{0}, x_{0}^{3}-3x_{0}),则切线斜率为 k=(x33x)x=x0=3x023k=(x^{3}-3x)^{\prime}\left.\right|_{x=x_{0}}=3x_{0}^{2}-3,又因切线平行于 xx轴,则切线斜率 k=3x023=0k=3x_{0}^{2}-3=0,解得 x0=±1x_{0}=\pm1,则切点为 (1,2)(-1,2)(1,2)(1,-2)


例 25 在抛物线 y=x2y=x^{2} 上取横坐标为 x1=1x_{1}=1x2=3x_{2}=3 的两点,作过这两点的割线,问该抛物线上哪一点的切线垂直于这条割线,并写出此切线方程。

【解】割线的斜率为 k1=321231=4k_{1}=\frac{3^{2}-1^{2}}{3-1}=4

设切点为 (x0,x02)(x_{0}, x_{0}^{2}),则切线的斜率为 k2=2x0k_{2}=2x_{0}

因切线垂直于割线,则 k1k2=1k_{1}k_{2}=-1,即 8x0=18x_{0}=-1,解得 x0=18x_{0}=-\frac{1}{8},则切点为 (18,164)\left(-\frac{1}{8}, \frac{1}{64}\right)

切线方程为 y164=14(x+18)y-\frac{1}{64}=-\frac{1}{4}\left(x+\frac{1}{8}\right),即 y=14x164y=-\frac{1}{4}x-\frac{1}{64}


例 26 过原点与曲线 y=lnxy=\ln x 相切的切线方程为

【解】设切点为 (x0,lnx0)(x_{0}, \ln x_{0}),切线的斜率为 k=(lnx)x=x0=1x0k=\left(\ln x\right)^{\prime}\left.\right|_{x=x_{0}}=\frac{1}{x_{0}}

则切线方程为 ylnx0=1x0(xx0)y-\ln x_{0}=\frac{1}{x_{0}}(x-x_{0}),又切线过原点 (0,0)(0,0),则 lnx0=1x0(x0)-\ln x_{0}=\frac{1}{x_{0}}(-x_{0}),解得 x0=ex_{0}=e,则切线方程为 ylne=1e(xe)y-\ln e=\frac{1}{e}(x-e),即 y=1exy=\frac{1}{e}x

例 27 (1995,数四、五) 设 f(x)f(x) 为可导函数,且满足条件 limx0f(1)f(1x)2x=1\lim_{x \to 0} \frac{f(1) - f(1 - x)}{2x} = -1,则曲线 y=f(x)y = f(x) 在点 (1,f(1))(1, f(1)) 处的切线斜率为

(A) 2.

(B) 1-1.

(C) 12\frac{1}{2}.

(D) 2-2.

【解】f(x)f(x) 可导,则

limx0f(1)f(1x)2x=12limx0f(1x)f(1)x=12f(1)=1,\lim_{x \to 0} \frac{f(1) - f(1 - x)}{2x} = \frac{1}{2} \lim_{x \to 0} \frac{f(1 - x) - f(1)}{-x} = \frac{1}{2} f'(1) = -1,

f(1)=2f'(1) = -2,所以切线斜率为 k=f(1)=2k = f'(1) = -2
故应选 (D).


例 28 (2003,数三) 已知曲线 y=x33a2x+by = x^3 - 3a^2 x + bxx 轴相切,则 b2b^2 可以通过 aa 表示为

b2=___.b^2 = \_\_\_.

【解】因曲线与 xx 轴相切,可知 xx 轴即 y=0y = 0 是曲线的切线.
设对应的切点为 (x0,y0)(x_0, y_0),则切点既在曲线上又在 xx 轴上.
y0=x033a2x0+b=0y_0 = x_0^3 - 3a^2 x_0 + b = 0,得 b=3a2x0x03=x0(3a2x02)b = 3a^2 x_0 - x_0^3 = x_0 (3a^2 - x_0^2)
又切线斜率 k=(x33a2x+b)x=x0=3x023a2=0k = (x^3 - 3a^2 x + b)' \Big|_{x = x_0} = 3x_0^2 - 3a^2 = 0,得 x02=a2x_0^2 = a^2
所以,b2=x02(3a2x02)2=a2(3a2a2)2=4a6b^2 = x_0^2 (3a^2 - x_0^2)^2 = a^2 (3a^2 - a^2)^2 = 4a^6.
故应填 4a64a^6.


例 29f(x)f(x) 连续,且 limx03f(1+x)2x=1\lim_{x \to 0} \frac{3 - f(1 + x)}{2x} = -1,求曲线 y=f(x)y = f(x) 上对应 x=1x = 1 处的切线方程和法线方程.

【解】由 limx03f(1+x)2x=1\lim_{x \to 0} \frac{3 - f(1 + x)}{2x} = -1limx02x=0\lim_{x \to 0} 2x = 0 知,limx0[3f(1+x)]=0\lim_{x \to 0} [3 - f(1 + x)] = 0,即

limx0f(1+x)=3.\lim_{x \to 0} f(1 + x) = 3.

f(x)f(x) 连续,limx0f(1+x)=f(1)\lim_{x \to 0} f(1 + x) = f(1),知 f(1)=3f(1) = 3,则切点为 (1,3)(1, 3).

切线斜率为 k=f(1)=limx0f(1+x)f(1)x=limx0f(1+x)3xk = f'(1) = \lim_{x \to 0} \frac{f(1 + x) - f(1)}{x} = \lim_{x \to 0} \frac{f(1 + x) - 3}{x}

=2limx03f(1+x)2x=2.= -2 \lim_{x \to 0} \frac{3 - f(1 + x)}{2x} = 2.

则切线方程为 y3=2(x1)y - 3 = 2(x - 1),即 y=2x+1y = 2x + 1.
法线方程为 y3=12(x1)y - 3 = -\frac{1}{2}(x - 1),即 y=12x+72y = -\frac{1}{2}x + \frac{7}{2}.


Last updated on